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Foreword 
The ACS Symposium Series was first published in 1974 to pro

vide a mechanism for publishing symposia quickly in book form. The 
purpose of the series is to publish timely, comprehensive books devel
oped from ACS sponsored symposia based on current scientific re
search. Occasionally, books are developed from symposia sponsored by 
other organizations when the topic is of keen interest to the chemistry 
audience. 

Before agreeing to publish a book, the proposed table of con
tents is reviewed for appropriate and comprehensive coverage and for 
interest to the audience. Some papers may be excluded to better focus 
the book; others may be added to provide comprehensiveness. When 
appropriate, overview or introductory chapters are added. Drafts of 
chapters are peer-reviewed prior to final acceptance or rejection, and 
manuscripts are prepared in camera-ready format. 

As a rule, only original research papers and original review 
papers are included in the volumes. Verbatim reproductions of previ
ously published papers are not accepted. 

ACS Books Department 
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Preface 

Quantum Monte Carlo provides an ab initio solution to the 
Schrodinger Equation by virtue of performing a random walk 
through configuration space in imaginary time. Recent benchmark 
calculations suggest that its most commonly employed variant, 
fixed-node Monte Carlo, estimates energies with an accuracy 
comparable to those from high-level coupled-cluster calculations. 
Each has its advantages and disadvantages, but arguably, at present, 
the quantum Monte Carlo and coupled-cluster approaches are com
plementary "gold-standards" of quantum chemistry. 

The chapters in this monograph are contributions from the Ad
vances in Quantum Monte Carlo Symposium held at Pacifichem 
2005, International Chemical Congress of Pacific Basin Societies. 
The Theoretical and Physical Chemistry Division of the Canadian 
Society for Chemistry (CSC) sponsored the symposium, whose 
objectives were: (1) to gather together experts to discuss current 
challenges in the field, and their latest approaches to addressing 
them; (2) to highlight applications of quantum Monte Carlo to a 
myriad of chemical and physical problems, ranging from isolated 
atoms and molecules to clusters, biomolecules, and condensed mat
ter; and (3) to facilitate an exchange of ideas with students and re
searchers in related fields. 

We extend special thanks to Professor Shigenori Tanaka, our 
colleague in coorganizing the symposium. Acknowledgment is 
made to the Donors of The Petroleum Research Fund, administered 
by the American Chemical Society (ACS), for providing partial fi-
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nancial support to the symposium. In addition, we are grateful for 
the assistance of Ms. Margaret Brown at the ACS Books Depart
ment in preparing this volume. 

James B. Anderson 
Department of Chemistry 
Pennsylvania State University 
University Park, PA 16802 

Stuart M . Rothstein 
Department of Chemistry 
Brock University 
St. Catharines, Ontario L2S 3A1 
Canada 
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Chapter 1 

Quantum Monte Carlo Calculations 
for Helium Dimers and Trimers 

Matthew C. Wilson1 and James B. Anderson2,* 

Departments of 1Physics and 2Chemistry, Pennsylvania State University, 
University Park, PA 16802 

We report fixed-node diffusion quantum Monte Carlo (QMC) 
calculations of the potential energies of interaction of helium 
atoms in helium dimers and trimers. Statistical errors are 
lower by a factor of two to ten than for earlier diffusion 
calculations. Node location errors are expected to be very 
small for these systems, and comparisons with exact 
calculations for the dimer indicate they are negligible at 
intermolecular distances beyond a few bohr. The calculations 
for the trimers reveal interaction energies very nearly pairwise-
additive for internuclear distances near the dimer equilibrium 
distance of 5.6 bohr and longer. At shorter distances the 
Axilrod-Teller-Muto third-order expression for trimers fails 
badly. The results confirm earlier Q M C calculations as well as 
thoses of an extended group function model (Røeggen and 
Almlöf) and have implications for predictions of the properties 
of small helium clusters as well as the properties of the bulk 
liquids and solids. 

© 2007 American Chemical Society 1 
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Introduction 

For the helium trimer with internuclear distances close to the equilibrium 
distance of the helium dimer, 5.6 bohr, the interaction is expected to be very 
close to the sum of the interaction between the three pairs of atoms. The higher 
order terms are thought to be very small and comprise the "nonadditive" 
contribution to the total energy of the cluster. In this paper, we present results 
for the interaction potential of a helium dimer and a helium trimer in symmetric 
linear and equilateral triangle configurations. 

Attractive forces between helium atoms are due to fluctuating electric 
moments, which induce dipoles in nearby atoms (London dispersion forces). A 
potential curve for the interaction between two helium atoms was first calculated 
by Slater (7) in 1928 and gave a minimum of -8.9 K at a distance of 5.6 bohr. 
Since then, various methods have been used to calculate the energies of different 
helium clusters with interesting and varied results. For example, early SCF 
calculations for the dimer with small basis sets predicted no attraction. As larger 
basis sets were able to be used, attractive wells in agreement with experiment 
were predicted. This was followed by the prediction of again no attraction with 
even larger basis sets. This odd behavior was largely the result of basis set 
superposition error, a difficulty encountered in many types of calculations for 
weak interactions. Modem high-level calculations by a variety of methods, 
including 'exact' Q M C , have given highly accurate and consistent predictions of 
the potential energy curve for the dimer (2). 

The first perturbative calculations for the trimer were done by Axilrod and 
Teller (J) and Muto (4) in 1943. Their third-order perturbation expansion is 
known as the Axilrod-Teller-Muto (ATM) expression. In 1953, Rosen (5) used 
the valence bond method to calculate the repulsive part of the interaction. 
Shostak (6) calculated the interaction energy of the linear helium trimer with the 
self-consistent L C A O method in 1955. The effect of nonadditive three-body 
forces on the third virial coefficient was estimated in 1966 by Sherwood, De 
Rocco, and Mason (7). Novaro and Beltran-Lopez (8) tested the pairwise 
additivity in the helium trimer at short ranges by predicing the potential energy 
surface using SCF-LCAO-MO calculations in 1972. More recently, in 1993, 
Parish and Dykstra (9) carried out calculations at the coupled cluster level with 
double substitutions using very large basis sets to investigate the many-body 
contributions to interaction potentials and the second-order exchange-dispersion 
energy. In 1995, Roeggen and Almlof (10) used an extended group function 
model for calculations of the three-body potential to obtain results more accurate 
than those previously available. 

Several types of quantum Monte Carlo calculations have been repoted 
earlier. In 1990, Mohan and Anderson (//) reported diffusion Q M C 
calculations for the equilateral triangle configuration of the trimer. In 1992, 
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Tawa et al. (72) reported variational Q M C calculations of similar accuracies for 
trianglular configurations. 'Exact' Q M C calculations, without node location 
error, were reported by Bhattacharya and Anderson (13). In the present work, 
diffusion Monte Carlo was used for both helium dimers and trimers. 

The energies calculated are with respect to separated atoms. For clusters of 
more than two helium atoms, the energy can be thought of as consisting of two 
terms, the energy of the pairs of atoms and a multibody correction. Specifically, 
for a trimer: 

Monomer: E\ 
Dimer: E2 = Z2E{ + AE2 

Trimer: £ 3 = L 3 i?! + E 3 AE2 + A£ 3 

In this research, the energies of helium dimers and trimers relative to separated 
atoms were calculated, along with the correction to the pairwise-additive energy, 
A E 3 . 

Calculation Procedure 

The calculations were done with the fixed-node diffusion quantum Monte 
Carlo (DQMC) method. For the dimer calculations, the trial function used was 
that due to Lowther and Coldwell (14) having the form: 

11/ - -t/1324/2 tt% ffx -t/1423/2 

-{72314/2 , ^ e f % -(72413/2 
-<PA23<PB14£ +<pA24<PB13e 

where (p N ij is a 189-term Hylleraas-like function and L^jki contains cross-terms for 
the electron-electron interactions. The trial function used for the trimer 
calculations was a similar 36-term function described by Bhattacharya and 
Anderson (75). The calculations were run for internuclear distances of 4.5, 5.6, 
6.5, and 7.5 bohr. For each geometry calculations were run at three step sizes 
(0.010, 0.005, and 0.002 a.u.) and the results extrapolated to a step size of zero. 

For comparisons, calculations using the Gaussian 03 suite of programs were 
run. The methods used were Hartree-Fock (HF), fourth-order M0ller-Plesset 
( M P 4 ) , and coupled-cluster at the single and doubles level (CCSD). The HF and 
CCSD calculations used the 6-311G** basis set; the M P 4 calculations used the 
aug-cc-pV5Z basis set. Also calculated were the energies predicted by the A T M 
expression: 

AE, = C 
3 cos y, cos y2 cos y 3 +1 
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where rl2, r 2 3 , and r 3 ! are the internuclear distances and yu y2, and y3, are the 
included angles. C is a positive constant on the order Fa 3 , where V is the 
ionization energy and a is the polarizability. Its value is 1.478 a.u. as given in 
(10). The Gaussian and A T M calculations were run for internuclear distances of 
2.5, 3.5, 4.5, 5.6, 6.5, and 7.5 bohr. 

Results 

The potential energies for the helium dimer relative to the exact value for a 
pair of separated atoms were calculated for four internuclear distances between 
4.5 and 7.5 bohr at three different time steps: 0.002, 0.005, and 0.010 au. The 
data from the calculations for each distance are presented in Figures 1-4 and the 
results are listed in Table I. The error bars indicate l a statistical error as 
determined from repeated calculations. 

The D Q M C calculations for the equilateral triangle form of the helium 
trimer were calculated at the same four internuclear distances as the helium 
dimer and with the same time steps. The data from the calculations for each 
distance are shown in Figures 5-8 and the results are listed in Table II. 

H e 2 (R = 4.5 bohr) 

64.5 

61.5 4 ' 1 ' 1 • 1 • 1 • 1 ' 
0.000 0.002 0.004 0.006 0.008 0.010 0.012 

Time Step (au) 

Figure 1. Calculated interaction energy AE2 for the helium dimer at a distance 
of 4.5 bohr at three time step sizes. 
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H e 2 (R = 5.6 bohr) 

-9.0 

-11.0 -I ' 1 ' 1 ' 1 ' 1 ' h 
0.000 0.002 0.004 0.006 0.008 0.010 0.012 

Time Step (au) 

Figure 2. Calculated interaction energy AE2for the helium dimer at a distance 
of 5.6 bohr at three time step sizes. 

H e 2 (R = 6.5 bohr) 

.5.5 _ . 

-7.5 -I ' 1 • 1 • 1 • 1 • 1 • 1 
0.000 0.002 0.004 0.006 0.008 0.010 0.012 

Time Step (au) 

Figure 3. Calculated interaction energy AE2for the helium dimer at a distance 
of 6.5 bohr at three time step sizes. 
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H e 2 (R = 7.5 bohr) 

-2.0 

- 3 . 5 -I ' 1 • 1 ' 1 • 1 ' 1 ' 1 
0.000 0.002 0.004 0.006 0.008 0.010 0.012 

Time Step (au) 

Figure 4. Calculated interaction energy AE2for the helium dimer at a distance 
of 7.5 bohr at three time step sizes. 

T A B L E I. Interaction energy calculated for the helium dimer 
by the diffusion quantum Monte Carlo method. 

Interaction Energy AE2 (K) 
Internuclear distance DQMC 

R (bohr) Exact QMC (present work) 
4.5 58.3(5) 61.7(4) 
5.6 -10.998(5) -10.92(8) 
6.5 -6.930(5)* -7.03(5) 
7.5 -3.073(3) -3.18(4) 

"Reference 2 
^Interpolated 
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Equilateral Triangle H e 3 (R = 4.5 bohr) 

194.0 

189.0 4 

* 184.0 
UJ 

179.0 4 

174.0 

y = 626.63x + 185.01 
R 2 =1 

y= 120.3061X+ 176.1883 
R2 = 0.3543 

-4-
0.000 0.002 0.004 0.006 0.008 

Time Step (au) 

0.010 

• With multibody interaction 
• Pairwise additive 

— With multibody interaction 
- - Pairwise additive 

0.012 

Figure 5. Interaction energy for the helium trimer in equilateral triangle 
configuration with sides of 4.5 bohr at three time step sizes and the 

corresponding pairwise-additive energy. 

Equilateral Triangle H e 3 (R = 5.6 bohr) 

-28.0 

0.000 0.002 0.004 0.006 0.008 0.010 0.012 

Time Step (au) 

Figure 6. Interaction energy for the helium trimer in equilateral triangle 
configuration with sides of 5.6 bohr at three time step sizes and the 

corresponding pairwise-additive energy. 
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Equilateral Triangle He 3 (R = 6.5 bohr) 

-17.0 -r . 

-17.5 4 

-21.5 4 — 1 · 1 · 1 • 1 • 1 . 1 
0.000 0.002 0.004 0.006 0.008 0.010 0.012 

Time Step (au) 

Figure 7. Interaction energy for the helium trimer in equilateral triangle 
configuration with sides of 6.5 bohr at three time step sizes and the 

corresponding pairwise-additive energy. 

Equilateral Triangle H e 3 (R = 7.5 bohr) 

-6.5 

-7.0 - : 

-7.5 -' 

-10.0 

y a 260.93x - 9.5407 
R2 = 0.9978 

y = 91.4990x-9.1470 
R2 = 0.9513 

0.000 0.002 0.006 

Time Step (au) 

• With multibody interaction! 
• Pairwise additive 

— With multibody interaction 
— Pairwise additive 

0.012 

Figure 8. Interaction energy for the helium trimer in equilateral triangle 
configuration with sides of 7.5 bohr at three time step sizes and the 

corresponding pairwise-additive energy. 
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TABLE II. Results for the diffusion quantum Monte Carlo calculations for 
the helium trimer with equilateral triangle configuration. 

R Ε E-3E, ΔΕ2 ΔΕ, (Κ) 
(bohr) (au.) (Κ) (Κ) Present Mohan and 

work Anderson" 
2.5" -8.6062(5) 33190(160) 13040(60) -59.30(240) 
3.5" -8.70088(13) 3260(40) 1169(30) -247(100) 
4.5 -8.7106058(15) 176.19(7) 61.7(4) -8.8(12) -4(30) 
5.6 -8.7112727(6) -32.58(17) -10.92(8) 0.2(4) 1(10) 
6.5 -8.7112395(3) -20.95(14) -7.03(5) 0.13(28) -9(10) 
7.5 -8.71120211(19) -9.15(6) -3.18(4) 0.39(18) 

"Reference 11 

The D Q M C calculations for the symmetric linear form of the helium trimer were 
calculated at the same four intenuclear distances as the helium dimer and with 
the same time steps. The data from the calculations for each distance are shown 
in Figures 9-12 and the results are listed in Table III. 

Linear H e 3 (R = 4.5 bohr) 

1 2 9.0 -r 

122.0 4 • 1 · 1 • 1 · 1 ' 1 ' 1 
0.000 0.002 0.004 0.006 0.008 0.010 0.012 

Time Step (au) 

Figure 9. Interaction energy for the helium trimer in symmetric linear 
configuration with sides of 4.5 bohr at three time step sizes and the 

corresponding pairwise-additive energy. 
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Linear H e 3 (R = 5.6 bohr) 

-18.0 

-22.0 I*'' 

-22.5 4 ' 1 ' 1 ' 1 • 1 ' 1 ' 1 
0.000 0.002 0.004 0.006 0.008 0.010 0.012 

Time Step (au) 

Figure 10. Interaction energy for the helium trimer in symmetric linear 
configuration with sides of 5.6 bohr at three time step sizes and the 

corresponding pairwise-additive energy. 

Linear H e 3 (R = 6.5 bohr) 

-10.5 

-11.0 

-11.5 

-12.0 

-13.0 

-13.5 

-14.0 

-14.5 

y = 301.37x- 14.178 
R2 = 0.9879 

y = 67.6555x- 13.1400 
R2 = 0.8752 

0.000 0.002 0.004 0.006 0.008 

Time Step (au) 

0.010 

• With multibody interaction 
• Pairwise additive I 

— With multibody interaction 
— Pairwise additive I 

0.012 

Figure 11. Interaction energy for the helium trimer in symmetric linear 
configuration with sides of 6.5 bohr at three time step sizes and the 

corresponding pairwise-additive energy. 
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Linear H e 3 (R = 7.5 bohr) 

0.000 0.002 0.004 0.006 0.008 0.010 0.012 

Time Step (au) 

Figure 12. Interaction energy for the helium trimer in symmetric linear 
configuration with sides of 7.5 bohr at three time step sizes and the 

corresponding pairwise-additive energy. 

T A B L E HI. Results for the diffusion quantum Monte Carlo calculations 
for the helium trimer with symmetric linear configuration. 

R Ε E-3E, AE2 AE3 (K) 
(bohr) (a.u.) (K) (K) Present 

work 
Bhattacharya 
and Anderson0 

3.5* -8.70417(19) 2200(60) 2225(7) -20(70) 

4.5 -8.7107846(16) 122.7(5) 61.7(4) 0.4(12) -13(12) 

5.6 -8.7112418(10) -21.7(3) -10.92(8) 0.3(5) 0.7(21) 

6.5 -8.7112146(19) -13.1(6) -7.03(5) 1.0(7) 0.8(13) 

7.5 -8.71119349(29) -6.43(9) -3.18(4) -0.03(18) 

"Reference 13 
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The results of the Gaussian 03 calculations and the A T M three-body correction 
term for six interatomic distances between 2.5 and 7.5 bohr are listed in Table 
IV for the equilateral triangle geometry and Table V for the symmetric linear 
geometry. 

Discussion 

The results of our calculations are in good agreement with previous quantum 
Monte Carlo calculations. We have reduced the statistical errors in the quantum 
Monte Carlo calculations of the equilateral triangle helium trimer by Mohan and 
Anderson (77) by more than a factor of ten. The errors in the quantum Monte 
Carlo calculations of Bhattacharya and Anderson (75) for the symmetric linear 
geometry of the helium trimer were reduced by factors of two to ten. We find 
again that the three-body interaction of helium trimers in both configurations is 
very small for internuclear distances of 5.6 bohr and larger. We also find again that 
the A T M expression fails badly for internuclear distances of less than 4.5 bohr, and 
for the equilateral triangle, even the sign is wrong. An explanation for this is given 
by the analysis of Bulski and Chalasinski (75), where the three-body correction is 
split into three contributions, of which the A T M expression is only a fraction of 
one, and the other two predominate at close distances. For internuclear distances of 
5.6 bohr and greater, both the D Q M C and the A T M values are both small, but the 
statistical error in the D Q M C values prevents further comparisons. 

The D Q M C results are entirely compatable witht the extended group function 
model (EGFM) results of R0eggen and Alrnlof (JO). This is particularly evident 
for the smaller internuclear distances of the trianglular case. In all cases, however, 
the D Q M C values fall within one or two standard deviations of the E G F M values. 
In this sense, the D Q M C calculations confirm the E G F M results. 

For the smaller internuclear distances, the several standard types of 
calculations (HF, CCSD, and MP4) give remarkably good agreement with each 
other and with the D Q M C calculations for the three-body corrections despite poor 
values for the two-body interactions. This was observed in the earlier D Q M C 
calculations. 

In one of the first calculations to use accurate pair potentials of the properties 
of liquid helium, Kalos et al. (16) found that predictions gave better agreement 
with experiment when the A T M correction was omitted than when it was included. 
Since then, a number of other calculations have been made for solid and liquid 
helium(3He and 4He) using several different three-body correction terms, some 
good and some bad, but most without any three-body correction term (7 7). Results 
of our current calculations, together with those of the best prior calculations, give 
consistent predictions of three-body corrections and should lead to more accurate 
first principle calculations of the properties of solid and liquid helium and helium 
clusters. 

Acknowledgement is made to the National Science Foundation: IGERT grant 
No. DGE 9987589. 
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T A B L E IV. Correction to the pairwise-additive energy calculated for 
helium trimers in an equilateral triangle geometry by various methods. 

R Three-body Interaction Energy AE3 (Κ) 
(bohr) HF CCSD MP4 ATM EGFAf DQMC 
2.5 -5708.46 -5902.54 -5610.95 168.32 -5930(240)* 
3.5 -284.26 -317.42 -288.90 8.15 -285 -274(100)* 
4.5 -7.67 -9.13 -10.70 0.85 -9.8 -8.8(12) 
5.6 0.22 0.19 -0.25 0.12 -0.05 0.2(4) 
6.5 0.06 0.06 -0.03 0.03 0.04 0.13(28) 
7.5 0.00 0.09 0.03 0.01 0.01 0.39(18) 

Reference 10 
*Reference 11 

TABLE V. Correction to the pairwise-additive energy calculated for 
helium trimers in a symmetric linear geometry by various methods. 

R Three-body Interaction Energy AE3 (K) 
(bohr) HF CCSD MP4 ATM EGFM1 DQMC 

2.5 601.58 638.05 638.53 -30.60 
3.5 11.87 12.28 13.39 -1.48 16.2 -20(70)* 
4.5 0.03 -0.3 -0.13 -0.15 0.26 0.4(12) 
5.6 0.03 0.0 -0.03 -0.02 -0.010 0.3(5) 
6.5 0.03 0.3 -0.06 -0.01 -0.005 1.0(7) 
7.5 0.00 0.1 0.00 0.00 -0.001 -0.03(18) 

"Reference 10 
^Reference 13 
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Chapter 2 

Energies and Properties of the Hydrogen 
Molecular Ion 

S. A . Alexander1 and R. L. Coldwell 2 

1Department of Physics, Southwestern University, Georgetown, TX 78626 
2Department of Physics, University of Florida, Gainesville, FL 32611 

Using variational Monte Carlo techniques we calculate the 
rovibrational energy and a number of rovibrationally averaged 
properties of several of the lowest vibrational and rotational 
levels of the hydrogen molecular ion. 

Introduction 

The hydrogen molecular ion has the unique distinction of being the only 
molecular system whose Born-Oppenheimer energy can be determined to 
arbitrary accuracy (1). In order to compare with experiment, however, this 
energy must be corrected for relativistic effects, non-adiabatic effects and even 
radiative effects. A wide variety of theoretical methods have been used to 
produce highly converged values for these corrections. In this paper we show 
that variational Monte Carlo techniques can produce very accurate energies and 
properties for this system. We begin by optimizing a simple wavefunction form 
at 26 internuclear distances. Using these molecular wavefunctions we then 
calculate the Born-Oppenheimer energy, the diagonal correction to the Born-
Oppenheimer approximation, the lowest-order relativistic corrections and the 

© 2007 American Chemical Society 15 
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radiative corrections at each distance. A l l of these results are discussed in the 
second section. With our wavefunctions we also calculate nine molecular 
properties at each internuclear distance. These calculations are described in the 
third section. In the fourth section we construct four potential energy surfaces 
and then optimize a set of rapidly convergent wavefunctions for several of the 
lowest rotational and vibrational levels of this system. With these rovibrational 
wavefunctions we then compute the rovibrational energy and a number of 
rovibrationally averaged properties for each level. The former calculations are 
described in the fifth section and the latter calculations in the sixth section. 
Wherever possible we compare our results to earlier ones in the literature. 
Unless otherwise indicated, all values in this paper are given in atomic units. 

Calculating the Molecular Energy and its Corrections 

Variational Monte Carlo is a method of computing the expectation value of 
an operator 

<Α> = Σ [ Ψ ί A Y J / W J ] / Σ [tf /Wj ] (1) 

i i 

and its standard deviation (i.e., statistical error) 

σ 2 = Σ [ ( A T r < A > T j ) 2 Ψ ? /wf ] / { Σ f ^ f /wj ] } 2 (2) 
i i 

using Monte Carlo integration. Here Ψ | = Ψ ^ ( χ ρ ΐ 8 the value of the trial 

wavefunction at the Monte Carlo integration point \{ and the weight function Wj 
= w(Xj) is the relative probability of choosing this point. In a variational Monte 
Carlo calculation the adjustable parameters in the trial wavefunction are often 
optimized with respect to a functional, usually some combination of the energy 
and its standard deviation (2,3). The Monte Carlo integration points used in 
these calculations are generated from a guiding function that can also be 
optimized with respect to the standard deviation of the local energy or any other 
property (4). 

In Ref. 5 we showed that the trial wavefunction form 

Ψ Τ - < 1 + P A B > E X * Σ a k q ' 1 A 4 -a r , A ) (3) 

k 
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produces rapidly convergent energies for the H 2

+ ground state. Here PAB is the 
operator that interchanges the two nuclei and q x = r x / ( l +crx) is a coordinate 
transformation that allows terms in the exponential to go smoothly to the 
asymptotic limit. The exponents i and j are integers (0, 1,...) which have been 
preselected for each value of k. A l l exponents that add up to N=i+j=4 are 
included in the trial wavefunction. Using a set of 4,000 Monte Carlo integration 
points we optimized all 16 adjustable parameters in Eqn. 3 so as to minimize the 
statistical error in the local energy. This step was repeated at 26 internuclear 
distances. Once these trial wavefunctions were determined, we computed the 
Born-Oppenheimer energies using 65,536,000 Monte Carlo integration points in 
order to obtain a low statistical error. As shown in Table I, our values are all 
within a few nanohartrees of earlier calculations (6,7). 

Handy and others have demonstrated that the diagonal energy correction to 
the Born-Oppenheimer approximation can easily be evaluated from the 
expression (8-11) 

ά2Ψ ά2Ψ ά2Ψ 

Ν ^ Μ

Ν

 J Τ Τ d Y N Τ 1 

In a variational Monte Carlo calculation the derivatives in Eqn. 4 can be 
computed by moving each atom by some small amount in each direction, 
reoptimizing the wavefunction and then numerically differentiating the 
wavefunction with respect to the nuclear coordinates. As in several earlier 
calculations these numerical derivatives are computed over the same Monte 
Carlo integration points to substantially reduce their statistical error (5,12-14). 
This correlated sampling works best when all the wavefunctions have been 
optimized to about the same statistical error. The values in Table I were 
computed using M N = 1836.152693 for the mass of the proton and 65,536,000 
Monte Carlo integration points. For comparison, we also list the values obtained 
by Bishop and Wetmore (6). At all values of R the difference between these 
values is less than a microhartree. 

The lowest-order relativistic corrections for the ground state of H 2

+ are 
given by the expectation value (15) 

4 

1 2 π 
Ε « , = < Ψ | - - Τ + — δ ( 0 | ψ > (5) 

τΌ c 
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Table 1. Potential energy surface of the H2*ground state. All values are in 
a.u. and have been computed with 65,536,000 Monte Carlo integration 

points. The number in the parenthesis is the statistical error. 

R Born-Oppenheimer 
Energy 

Non-Adiabatic 
Energy Relativistic Energy Radiative Energy 

0.2 +3.071379733(54) 
+3.071379703 [6] 

0.00054357(9) 
0.000542648 [6] 

-0.000076765(87) 
-0.000076624 [17] 

0.0000107983(13) 

0.4 +0.699246016(38) 
+0.699245941 [6] 

0.00049530(9) 
0.000501166 [6] 

-0.000049508(54) 
-0.000049442 [17] 

0.0000074934(9) 

0.6 -.004817997(24) 
-0.004818048 [6] 

0.00044939(8) 
0.000449446 [6] 

-0.000033292(36) 
-0.000033252 [17] 

0.0000055757(7) 
0.0000055751 [19] 

0.8 -.304480005(15) 
-0,304480094 [6] 

0.00040222(8) 
0.000402704 [6] 

-0.000023667(26) 
-0.000023637 [17] 

0.0000042107(5) 
0.0000042101 [19] 

1.0 -.451786273(11) 
-0.451786313 [6] 

0.00036372(7) 
0.000363940 [6] 

-0.000017714(20) 
-0.000017691 [17] 

0.0000033297(4) 
0.0000033293 [19] 

1.4 -0.569983491(6) 
-0.569983528 [6] 

0.00030763(6) 
0.000307598 [6] 

-0.000011302(14) 
-0.000011287 [17] 

0.0000023165(3) 

1.5 -0.582323174(5) 
-0.582323205 [6] 

0.00029707(6) 
0.000297039 [6] 

-0.000010336(12) 
-0.000010322 [17] 

0.0000021537(3) 
0.0000021536 [19] 

1.6 -0.590937199(5) 
-0.590937225 [6] 

0.00028760(6) 
0.000287614 [6] 

-0.000009528(12) 
-0.000009515 [17] 

0.0000020142(2) 

1.7 -0.596696250(4) 
-0.596696270 [6] 

0.00027919(6) 
0.000279207 [6] 

-0.000008849(11) 0.0000018941(2) 

1.8 -0.600253616(4) 
-0.600253634 [6] 

0.00027170(6) 
0.000271718 [6] 

-0.000008276(10) 
-0.000008265 [17] 

0.0000017902(2) 
0.0000017902 [19] 

1.9 -0.602105768(3) 
-0.602105783 [6] 

0.00026504(5) 
0.000265189 [6] 

-0.000007790(10) 0.0000016999(2) 
0.0000016999 [19] 

2.0 -0.602634202(3) 
-0.602634214 [6] 

0.00025918(5) 
0.000259144 [6] 

-0.000007376(9) 
-0.000007366 [17] 

0.0000016211(2) 
0.0000016211 [19] 
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Table 1. Continued. 

R Born-Oppenheimer 
Energy 

Non-Adiabatic 
Energy Relativistic Energy Radiative Energy 

2.1 -0.602134935(3) 
-0.602134946 [6] 

0.00025390(5) 
0.000253912 [6] 

-0.000007024(9) 0.0000015522(2) 
0.0000015522 [19] 

2.2 -0.600839617(3) 
-0.600839627 [6] 

0.00024929(5) 
0.000249296 [6] 

-0.000006723(8) 
-0.000006715 [17] 

0.0000014918(2) 
0.0000014918 [19] 

2.3 -0.598930879(3) 
-0.598930886 [6] 

0.00024524(5) 
0.000245244 [6] 

-0.000006467(8) 0.0000014387(2) 

2.4 -0.596553632(3) 
-0.596553639 [6] 

0.00024170(5) 
0.000241708 [6] 

-0.000006248(8) 
-0.000006240 [17] 

0.0000013920(2) 

2.5 -0.593823505(2) 
-0.593823511 [6] 

0.00023858(5) 
0.000238643 [6] 

-0.000006062(8) 
-0.000006054 [17] 

0.0000013509(2) 

2.6 -0.590833192(2) 
-0.590833196 [6] 

0.00023601(5) 
0.000236011 [6] 

-0.000005904(7) 
-0.000005897 [17] 

0.0000013147(2) 

3.0 -0.577562861(2) 
-0.577562864 [6] 

0.00022911(5) 
0.000229166 [6] 

-0.000005488(7) 
-0.000005482 [17] 

0.0000012088(1) 
0.0000012088 [19] 

4.0 -0.546084882(2) 
-0.546084884 [6] 

0.00023640(5) 
0.000229470 [6] 

-0.000005311(6) 
-0.000005305 [17] 

0.0000011080(1) 
0.0000011080 [19] 

5.0 -0.524420296(2) 
-0.524420295 [6] 

0.00024521(6) 
0.000241202 [6] 

-0.000005631(6) 
-0.000005625 [17] 

0.0000011147(1) 
0.0000011147 [19] 

6.0 -0.511969049(1) 
-0.511969048 [6] 

0.00025358(6) 
0.000253543 [6] 

-0.000006020(7) 
-0.000006014 [17] 

0.0000011521(1) 
0.0000011520 [19] 

7.0 -0.505594004(1) 
-0.505594004 [6] 

0.00026223(6) 
0.000262174 [6] 

-0.000006312(7)-
0.000006306 [17] 

0.0000011861(1) 

8.0 -0.502570388(1) 
-0.502570389 [6] 

0.00026720(6) 
0.000267142 [6] 

-0.000006485(7) 
-0.000006479 [17] 

0.0000012086(1) 

9.0 -0.501195452(1) 
-0.501195453 [6] 

0.00026980(6) 
0.000269735 [6] 

-0.000006576(7) 
-0.000006569 [17] 

0.0000012213(2) 

10.0 -0.500578728(1) 
-0.500578729 [6] 

0.00027109(6) 
0.000271025 [6] 

-0.000006620(7) 
-0.000006614 [17] 

0.0000012279(2) 
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where c = 137.0359895 is the speed of light. The first term in this expression is 
the mass-velocity operator and the second is the one-body Darwin term. We 
have evaluated Eqn. 5 at each internuclear distance using using 65,536,000 
Monte Carlo integration points. Our results are listed in Table I and are in 
excellent agreement with earlier calculations (16,17). 

For a one-electron system the radiative correction to the ground state energy 
2 3 

(of order Ζ α ) is simply the lowest order Lamb shift (15) 

Erad = " 7 [ 2 Ln(c) -2 Ln(2) + ]f - L n ( K Q ) ] < Ψ | 6 ( Γ , A ) | Ψ > (6) 
3c 

where Ln(K 0 ) is a quantity normally referred to as the Bethe logarithm. This 
function depends on the internuclear distance and is notoriously difficult to 
evaluate accurately. Following the example of Bishop and Cheung (18) we 
interpolate the values of the Bethe logarithm computed by Bukowski et al. (19) 
and combine these with the same values for the electronic density that were used 
to evaluate Eqn 5. Our results are listed in Table I and, not surprisingly, are in 
excellent agreement with the calculations of Ref. 19. 

Calculating Molecular Properties 

Once a trial waveunction has been optimized it is relatively easy to calculate 
the expectation value of even complicated operators using Monte Carlo methods 
(12). We have used the molecular wavefunctions computed in the previous 
section to evaluate nine geometrical properties at each internuclear distance 
using 65,536,000 Monte Carlo integration points. Here the permanent 
quadrupole moment is defined as Q 2 = (R 2 + η 2 -3zi2)/2 for a molecule oriented 
along the z-axis. As Table II shows, almost all of our properties are determined 
to several significant digits. Only a few of these properties have been calculated 
using other theoretical methods and our values are in excellent agreement with 
these earlier results (7,18,20). 

Calculating Rovibrational Energies 

The rovibrational energies of a diatomic are the solutions of the radial 
Schrodinger equation (1) 
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-1 d V R> J(J+1) 

^ ~ d R ^ - + t v ( R ) - ^ R Î ] * v J ( R ) = E v , V R ) W 
where μ is the reduced mass of the molecule and V(R ) is the potential energy 
surface as a function of the internuclear distance R. For these calculations we use 
the energies in section 2 to form four slightly different potential energy surfaces: 
PES1 is simply the Born-Oppenheimer energy, PES2 is the sum of the PES1 and 
the diagonal non-adiabatic energy, PES3 is the sum of PES2 and the relativistic 
energy, PES4 is the sum of PES3 and the radiative energies. In Ref. 21 we found 
that an 11-term Lagrange interpolation of V(R)*R 2 provides an accurate estimate 
of points everywhere on the potential energy surface. We also showed that an 
exponential Pade is a rapidly convergent trial wavefunction for diatomics 

| a k ( R - R e ) k 

forv=0: Ψ-piR) = exp( — ) 

I b k ( R - R e ) k 

k=0 

E a k ( R - R / 
k=0 

for v=l : T T ( R ) = (R -a) exp( — ) 
E b k ( R - R e ) k 

k=0 

(8) 

I a k ( R - R e ) k 

k=0 
forv=2: ΨΎ(Κ) = (R -a)(R -b) exp( ~ ) 

Σ Κ (R-R J K 
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forv=3: Ψτ(Κ) = (R -a)(R -b)(R -c) exp( 

i b k ( R - R / 
) 

k=0 

where R« is the equilibrium distance. For each of the lowest several rotational 
and vibrational levels of this system we optimized a unique n=4 wavefunction 
using variance minimization and 4,000 Monte Carlo integration points. A l l 
rotational levels have the same wavefunction form - only the value of J in Eqn. 7 
is changed. Because we are interested in the effect of the different corrections on 
the rovibrational energies and on the rotationally-averaged properties, this 
process was repeated for each potential energy surface. 

There are two sources of error in the evaluation of Eqn. 7 - the integration 
error and the error caused by our interpolation procedure. We evaluated the 
energy of each optimized wavefunction using 1,024,000 Monte Carlo integration 
points. This resulted in a set of energies that had a very low statistical error. We 
can estimate the grid error by omitting one point in V(R), reoptimizing the trial 
wavefunction and then recalculating E v J . This process was repeated until each 
point in V(R) had been omitted. The grid error in each rotational-vibrational 
energy level is just the standard deviation between our original value and these 
new energies. For all of the energies considered here we found that the grid error 
is many times larger than the integration error. To decrease it we will need to use 
a grid with many more points. 

In Table III we list the final rovibrational energies for each potential energy 
surface. These are in excellent agreement with those computed using other 
theoretical methods (23-26). As expected, the diagonal energy correction to the 
Born-Oppenheimer approximation produces the largest change in the 
rovibrational energies - on average about 253 microhartrees. In contrast, the 
average relativistic correction is 7 microhartrees and the average radiative 
correction is 1 microhartree. 

Calculating Rovibrationaly Averaged Properties 

Once a set of rovibrational wavefunctions have been determined, the 
vibrationally averaged values of a property can be computed from the expression 

f Ψ Ν 1 (Λ) A ( R ^ y J ( R ) d R / f TJJ(R) dR (9) 
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Table 3. Rovibrational energies (in a.u.) of the H 2

+ ground state computed 
using four different potential energy surfaces. The number in the 

parenthesis is the estimated error. 

V J PESl PES2 PES3 PES4 

0 0 -0.597395894(6) -0.59713844(2) -0.59714574(2) -0.59714414(1) 

0 1 -0.597130415(5) -0.59687311(2) -0.59688040(2) -0.59687880(1) 

0 2 -0.596601584(5) -0.59634456(2) -0.59635182(2) -0.59635022(2) 
0 3 -0.595813570(5) -0.59555696(2) -0.59556419(2) -0.59556260(2) 
1 0 -0.58740831(3) -0.5871541(1) -0.5871613(1) -0.5871597(1) 

1 1 -0.58715681(3) -0.5869028(1) -0.5869099(1) -0.5869083(1) 

1 2 -0.58665585(3) -0.5864021(1) -0.5864092(1) -0.5864076(1) 

1 3 -0.58590943(3) -0.5856560(1) -0.5856631(1) -0.5856615(1) 

2 0 -0.5780009(2) -0.5777495(6) -0.5777564(6) -0.5777549(6) 

2 1 -0.5777629(2) -0.5775116(6) -0.5775186(6) -0.5775170(6) 

2 2 -0.5772888(2) -0.5770378(6) -0.5770447(6) -0.5770432(6) 

2 3 -0.5765826(2) -0.5763318(6) -0.5763388(6) -0.5763373(6) 

3 0 -0.5691543(5) -0.568905(2) -0.568912(2) -0.568910(2) 

3 1 -0.5689294(5) -0.568680(2) -0.568687(2) -0.568686(2) 

3 2 -0.5684815(5) -0.568233(2) -0.568239(2) -0.568238(2) 

3 3 -0.5678142(5) -0.567566(2) -0.567572(2) -0.567571(2) D
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As in our earlier discussion of Eqn. 7 this expectation value will have two 
sources of error - the integration error and the use of a finite grid to represent 
A(R). Here we use a 5-term Lagrange interpolation of all the properties in Table 
II to provide an accurate estimate of A(R) at all values of R. In all our 
calculations we found that a relatively small number of integration points 
produces a result that is converged to many significant digits. Using the same 
procedure described in the previous section, we computed the grid error for each 
property and found that it is many times larger than the integration error. 

In Table IV we list a number of vibrationally averaged properties for several 
of the lowest vibrational and rotational levels of this system. These were 
computed using the properties in Table II, the rovibrational wavefunctions from 
our most accurate potential (PES4) and 1,024,000 Monte Carlo integration 
points. When we repeated these calculations using our other rovibrational 
wavefunctions, we found that the influence of the potential energy surface on our 
vibrationally averaged properties is roughly the same as on our rovibrational 
energies. If we compare each set of properties with the values produced by the 
Born-Oppenheimer potential, the diagonal energy correction to the Born-
Oppenheimer approximation produces the largest change (averaging about 
0.04%). Relativistic and radiative corrections produce average changes of about 
0.001% and 0.0003% respectively. 

Conclusions 

Using variational Monte Carlo and a simple wavefunction form that contains 
only 16 adjustable parameters we calculated the Born-Oppenheimer energy, the 
diagonal correction to the Born-Oppenheimer approximation, the lowest order 
relativistic energy, an estimate of the radiative energy and nine molecular 
properties of the ground state of the hydrogen molecular ion at 26 internuclear 
distances. These properties were then combined with rapidly convergent 
rovibrational wavefunctions to produce rovibrationally averaged properties for 
several of the lowest rotational and vibrational levels of this system. Our results 
are in excellent agreement with previous values found in the literature (27,28). 
Since all of the techniques used here can easily be generalized to polyatomics, 
we believe that the calculations in this paper are a necessary first step toward 
using Monte Carlo methods to evaluate rovibrationally averaged properties for a 
wide variety of molecules. 
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Chapter 3 

Accuracy of a Random Walk-Based Approach 
in the Determination of Equilibrium Bond Lengths 

and Harmonic Frequencies for Some Doublet 
First-Row Diatomic Radicals 

Shih-I L u 

Department of Applied Chemistry, Fooyin University, 151 Chinhsueh Road, 
Ta-Liao Hsiang, Kaohsiung Hsien, 831 Taiwan 

The accuracy of equilibrium bond lengths and harmonic 
frequencies for 12 doublet first-row diatomic radicals is 
presented as predicted by the fixed-node diffusion quantum 
Monte Carlo method based on the Ornstein-Uhlenbeck random 
walk guided by a floating-spherical-Gaussian-orbital and 
spherical-Gaussian-geminal-type of trial wave function. 
Compared to the experimental determined values, the random 
walk based approach gives the absolute mean deviations of 
0.0019 Å and 18 cm-1 for the equilibrium bond length and 
harmonic frequency, respectively. We also compare the 
random-walk-based results with BD(TQ) and CCSD(T) 
calculated values with a basis set of cc-pVQZ. 

© 2007 American Chemical Society 29 
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Introduction 

This study presents a comparison to experimental values of equilibrium 
bond distances and harmonic frequencies of 12 doublet first-row diatomic 
radicals to investigate the performance of a random walk based approach in 
solving the many-electron Schrôdinger equation for open-shell radicals. Recently 
Beran et al. (J) reported some sophisticated coupled-cluster based results using 
the basis sets of cc-pVTZ and cc-pVQZ for the same set of molecules that are 
C H , O H , F H + , BO, C N , C O + , N 2

+ , CF, NO, 0 2

+ , OF, and F 2

+ . 
The random walk based method employed in this work is the fixed-node 

(FN) diffusion quantum Monte Carlo (DQMC) method (2-5) implemented with 
the Ornstein-Uhlenbeck (OU) random walks guided by a trial wave function 
constructed from floating spherical Gaussian orbitals (FSGO) and spherical 
Gaussian geminals (SGG). This approach was designated as the 
OUDQMC/FSGO-SGG (6,7). This work reports a further application of the 
method and results described in earlier papers (8,9). Part of calculated results 
was published in the Journal of Chemical Physics (10). 

Computational details 

Trial wave function 

The most popular form of trial wave function is the so-called Jastrow-Slater 
wave function (2) that consists of a correlation factor, usually exp(u(R)), where 
u(R) is some function which is totally symmetric in the electron coordinates, 
multiplied by a Slater determinant. The Slater determinant is usually obtained in 
a mean-field calculation like Hartree-Fock or Kohn-Sham density function 
theory. For some cases in which the non-dynamical correlation is important, a 
sum of a few determinants has proven to be useful. 

In our approach, another type of trial wave function, the FSGO-SGG-type 
trial wave function, was introduced. The FSGO-SGG-type trial wave function 
( (pF ) for ab N-electron system is a linear combination of many-configuration 
wave functions. The configuration wave function taking care of a two-electron 
correlation between the two electrons occupied the spin-orbitals of I, and i2, 
respectively, can be read as 

\4j\<j2<,N 
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in which is the coefficient, (j\9j2) is the electron pair in the two spin-

orbitals, ix and i2, ^ / ι / 2 ( . / ρ 7 2 ) l s * e ^ χ 2 sub-matrix of φ that lies on the 

intersection of rows /, and i 2 with columns y, and y 2 , and , Ο Ρ Λ ) *S * E 

signed minor determinant of ^ in which the rows ix and / 2 and columns j\ 

and y 2 are deleted from φ . The φ is a Slater determinant constructed from 

spin-orbital that is a product of spatial orbital based on the FSGOs and an 
electron spin eigenfUnction. Each configuration wave function correlates 
different pair of spin-orbitals, thus the nature and the FSGOs of φ for different 
configuration wave function might be different. The correlation term, 
Six , ι 2 O i 9J2)» being an expansion of the SGGs that is symmetric with respect to 
the exchange of two electrons might be different for different configuration wave 
functions. With the independent particle wave function, ψ0, the FSGO-SGG-
type trial wave function for a N-electron system can be written as 

<PF=VO+ Σ ^ α · 

For the independent particle wave function, the basis set of the Is orbital of 
hydrogen is an expansion of six spherical Gaussian orbitals proposed by Stewart 
(11), and the basis set for atoms except hydrogen is taken from the well-
tempered Gaussian-type-function basis set of (14s9p) of Huzinaga and 
Klobukowski (12). The 2p-type functions are expanded by a linear combination 
of two spherical Gaussians referred to as the lobe functions proposed by Whitten 
(13) in which the two spherical Gaussians are located at different points in space 

in order to give the proper orbital symmetry. In the optimization of ψ0, all 

spherical Gaussians are allowed to adjust their positions and sizes. For the 

correlated state configuration wave function, , the determinant parts are 

constructed from the Is and 2s orbitals that are expanded by 3 spherical 
Gaussian orbitals proposed by Stewart (11), and as well the 2p orbital that is 
expanded in two lobe functions proposed by Whitten (13). The correlation part, 

£/,,i 2 Ο 1 5 / 2 ) » i s a l i n e a r combination of six SGGs. 

An evaluation of matrix elements over configurations results in many-
electron integrals, and formulas for closed form evaluation of them have been 
given earlier (14,15). We make use of the quasi-Newton technique (16) with 
analytical first energy derivatives to optimize the variational parameters of ψ0 . 

The S I M P L E X technique (17) that requires the functional values only is used to 

optimize the variational parameters of ψΐχί · To simplify the task of 
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optimization of trial wave functions, we optimized one configuration wave 
fonction at a time. After finishing the optimization of all configuration wave 
functions, we repeated the procedure again. It usually took five or six steps to 
obtain a converged trial wave function. In practical calculation here, however, 
we dropped the configuration with a weight of less than 0.0001 to reduce the 
number of configuration state functions to save the computational demanding. 

The FSGO-SGG-type trial wave function has some characteristics 
interested. Firstly, it has a MCSCF-like expansion but the correlated 
configuration wave function has a freedom in choosing basis functions. The 
correlated configuration wave function is not constructed from a simple 
replacement of one or two spin-orbitals of the independent particle wave 
function. Secondly, it describes bonding and lone-pair electrons more efficiently 
than an atom-centered basis functions. Thirdly, it gives an analytical energy 
functional although a very complicated one. This offers an opportunity in the 
optimization of trial wave function by means of deterministic approaches in 
addition to Monte Carlo optimization techniques. Fourthly it takes the difference 
in the correlation strength between two electrons occupying different paris of 
spin-orbitals into account in construction of trial wave function. Fifthly, it 
enables the O U procedure in the D Q M C simulations. This is described in the 
appendix. 

Diffusion quantum Monte Carlo 

The imaginary time Schrôdinger equation implemented with the importance 
sampling technique with a trial wave function, φΡ, appears as a diffusion-drift 
equation with branching term as (18) 

A 

f = ^ V 2 / - V ( y V l n | ^ | ) - ( ^ - £ r ) / ) 

dt 2 <pF 

where f(R,t) is a product of the trial wave function and the exact solution of 

Schrôdinger equation within the fixed-node approximation, ET is the reference 

energy adjusted in the simulation process, and Η is the usual Hamiltonian 
operator. The ground-state energy can then be obtained as an average value of 

the local energies, ΗφΡ I q>F . The first two terms and the third term of df/dt 
in this equation are simulated, respectively, by the O U process while using the 
FSGO-SGG-type trial wave function and by the technique of cumulated weights 
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proposed by East et al. (19) The details about the O U random walks are given in 
the appendix. 

A cut-off term for the local energies as suggested by DePasquale et al. (20) 
was used to control the branching of the random walkers in the Monte Carlo 

2 
simulation. For | EL (R) — Ev\ > -η=, one uses 

EL{R) = EV + sign[^j=, EL (R) - Ev ], 

V i 

and the branching factor is taken to be 

>Λ 1 

In which Ev and ET are the variational energy of the trial wave function and 

the reference energy adjusted in the propagation, respectively; R and i? f are 
the last and present positions of random walkers, respectively. A small size of 
time step of 0.0002 a.u. was used to avoid a zero size of time-step extrapolation. 
In order to make accurate comparisons with experiment, the all-electron 
OUDQMC/FSGO-SGG computations were performed for sufficiently long time 
to yield statistical error bars less than 0.01 kcal/mol for electronic energies and 
less than 10"4 hartree/bohr for energy gradients. 

Geometry optimization 

Accurate and efficient calculation of energy gradient with regard to 
geometrical parameters is a basic requirement for a modern electronic structure 
theory to be one of the mainstream approaches in the field of quantum chemistry. 
In the development of D Q M C , the finite difference technique is a useful method 
to determine energy gradient. For a D-dimensional system, the computational 
requirement is at least D+l times of single Monte Carlo calculation. This 
prevents the finite difference technique from implementing into D Q M C for a 
large system. The other choice is to implement the Hellmann-Feynman (H-F) 
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theorem in the D Q M C simulation. However, there was a big challenge in 
accurate calculation of H-F energy gradient in D Q M C . Difficulty of the 
calculated variances growing rapidly arises in the direct evaluation of H-F 
energy gradients in the Monte Carlo simulation due to terms involving the third 
order of the reciprocal of electron-nuclear distances, \lrfa (2). In order to avoid 
the problem related to the infinite variance of the H - F force estimator, a 
renormalized technique suggested by Assaraf and Caffarel was used to modify 
the H - F force estimator (21). For a particular component q, the renormalized 
expression is 

φF <PF ψF 

where H is some rather arbitrary Hermitian operators and (pF an arbitrary 
auxiliary wave function (supposed to be square-integrable). The auxiliary 
function for a diatomic molecule having Ν electrons considered here is 
introduced as 

<PF{*A) = <PF*ZAY}XL \ À 

M n - R A 

to remove the infinite variance in the X-component of the H-F energy gradient 

exerted on the atom A whose location and charge are RA and ZA , respectively. 

In the geometry optimization procedure, the search direction was chosen 
using the quasi-Newton method implemented with the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) Hessian updating formula (16) based on the 
renormalized H-F V M C energy gradients and the F N - D Q M C electronic 
energies. The systems studied in this work are diatomic molecules, so the degree 
of freedom involved is one. Hence, after a simple arithmetic, the updating 
formula for geometry in an one-dimensional case can be rewritten 
^ xM =xk~ gjHk =xk~gk* (xk - xk_x)l(gk ~ & M ) , in which k is the 
step and x, g, and H are the coordinate, gradient, and Hessian, respectively. 

The trial wave functions for geometries other than the initial geometry in the 
geometry optimization procedure have the same parameters as the initial one but 
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the coordinates are relative to the new nuclear positions. A self-consistent field 
procedure with a convergence criterion of 10"8 with regard to changes in the 
density matrix is then used to obtain the coefficients of spherical Gaussians 
constructing determinants for every configuration wave function while keeping 
other parameters frozen. Finally, the coefficients of all configuration wave 
functions were obtained by solving a Secular equation about all configuration 
wave functions. 

The harmonic frequency at the stationary molecular geometry was 
calculated from the renormalized H-F D Q M C energy gradient (21) 

FDQMC(q) = FVMC(q) + [EL-<EL >][w-<w>] 

in which w = φρ/φρ, based on the second-order approximation (22) 

< F > EXACT W < F >SOA = 2 < F >DQMC ~ < F >VMC " 

To obtain reliable results, the Monte Carlo simulations in the determination 
of harmonic frequencies were performed sufficiently long to reduce the 
statistical uncertainties of energy gradient and electronic energy to less than 10"6 

hartree/bohr and 10"8 hartree, respectively. 
The elements of the Hessian, htj, are obtained from the difference of the two 

energy derivatives (Ft) and the step size ( Δ 7 ) based on the central finite-

difference approximation, 

^ _ 1 |-(^/)+0.5A; ""(^D-O.SAy | C^/)+0.5A, ~ C ^/ ) -0 .5A , -, 

y ~ 2 Δ Δ 
J I 

to reduce the errors that occur in the calculation of the energy gradient. 

Calculated results and discussion 

We constructed the FSGO-SGG-type trial wave function at the B3LYP/aug-
cc-pVDZ calculated geometries for all diatomic radicals. In search of the 
equilibrium bond lengths, we also constrained one atom on the origin and the 
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other atom on the positive X-axis. The B3LYP/aug-cc-pVDZ, BD(TQ)/cc-pVQZ 
and CCSD(T)/cc-pVQZ calculations were carried out by the Gaussian 03 
program (23). 

Table I lists the experimental values of equilibrium bond lengths taken from 
the literature (24-26) and the calculated values from the OUDQMC/FSGO-SGG, 
BD(TQ)/cc-pVQZ, and CCSD(T)/cc-pVQZ calculations. Comparing the 
experimental values, the OUDQMC/FSGO-SGG calculation gives the absolute 
mean deviations of 0.0019 Â compared with the results from BD(TQ)/cc-pVQZ 
and CCSD(T)/cc-pVQZ calculations, 0.0021 A and 0.0025 A , respectively. 

Table II lists the experimental values of harmonic frequencies taken from 
the literatures (24,27,28) and the calculated values from the OUDQMC/FSGO-
SGG, BD(TQ)/cc-pVQZ, and CCSD(T)/cc-pVQZ calculations. Comparing the 
experimental values, the OUDQMC/FSGO-SGG calculation gives the absolute 
mean deviations of 18 cm' 1 compared with the results from BD(TQ)/cc-pVQZ 
and CCSD(T)/cc-pVQZ calculations, 21 cm"1 and 43 cm"1, respectively. 

The Monte Carlo calculation gave a high quality in the determination of 
equilibrium bond lengths and harmonic frequencies for the 12 doublet radicals 
that is consistent with a sophisticated BD(TQ)/cc-pVQZ calculation that used a 
large basis set and added triples and quadruples contributions to a Brueckner 
Doubles. Considering the Monte Carlo approach has a better scaling behavior 
relative to the BD(TQ) and CCSD(T) calculations, our study demonstrated the 
competence of the random walk based approach for open-shell radicals. 
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Appendix 

Consider a one-dimensional random walk under an harmonic velocity field 
generated by one spherical Gaussian function, the corresponding Fokker-Planck 
equation is obtained by a simple arithmetic, 
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H = L^l + 2a^(x.f), ( A l ) 

in which f is a product of the trial wave function, φΡ, and the exact ground-
state wave function. This equation that is the Fokker-Planck equation for one 
variable for an Ornstein-Uhlenbeck process describes a Brownian motion under 
an external harmonic velocityfield with a force constant 2a (29). There is an 
analytical solution for this simple equation, 

0 S r ( l - ^ ) ( l - e " 4 * ) 

This analytical solution gives the time-dependent behavior of averages of χ and 
x2 for the random walkers under an external harmonic velocity field with a force 
constant 2a, 

<xt>=x0e-2at (A2) 

and 

4a 4a 

Therefore, it is not necessary to implement a Monte Carlo procedure to simulate 
the behavior of particles under this situation. 

However, for a more complex system, there is no analytical solution to the 
corresponding Fokker-Planck equation. To describe time-dependent behavior of 
particles in a more complex velocity fileds, a Monte Carlo scheme is a powerful 
strategy. In conventional D Q M C simulation, the Langevin-based approach was 
implemented and gave many accurate calculated values (2). In our approach, we 
proposed an alternative. Consider the one-dimensional case, we design a Markov 
procedure, xk+l = axk + gka, in which a and σ are parameters depending on 
the positions of random walkers, gk is a Gaussian random number with mean of 
zero and variance of one, and k and k +1 are two successive steps in the 
simulation. Repeating this Markov procedure after η steps leads to the averages 
of χ and x 2 for the random walkers, 
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<x„ >=x0a (A4) 

and 

<xl>=~+a^xl--^-j). 
1-a I-a 

(A5) 

After a comparison between Eqs. (A2) and A(3) and Eqs. (A4) and A(5), the 
analytical solution and our Markov procedure give the same average values of χ 
and x 2 , while the two conditions in which δ is the size of time step satified: 

1 n 1 

-2αδ , 2 I""" 

a = e and σ = . 
4a 

Hence, we can use this simple Markov procedure, to simulate the Fokker-
Planck equation without splitting the diffusion and drift parts. For a more 
complex system, there is no analytical solution, however, a similar Markov 
algorithm can also be used to describe the corresponding Fokker-Planck 
equation for a complex system. 

Now, we took the ground state of H\ molecule as an example to illustrate 
how to implement the Markov procedure to D Q M C simulation. There is only 
one electron in this simple system. We write the trial wave function as a 
sum of two spherical Gaussians located at the two hydrogen 
atoms, φΡ = χΑ (1) + χΒ (1). Hence, the harmonic velocity fields generated by 
this simple trial wave function have the following form, 

φ F XAM+XBQ) 

^(l)Vln^(l) + j f l(l)V^(l) 

= £di!) vin χ. (1) + V \ηχΒ (1) 

This equation has two harmonic velocity fields located on the two hydrogen 
atoms. Random walker chooses one of the two harmonic velocity fields 
according to a probability proportional to the prefactor of each harmonic 
velocity field. 
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For a more complex system, there are many harmonic velocity fileds 
generated by a trial wave function constructed by spherical Gaussians. Random 
walker chooses one of the harmonic velocity fields according to a probability 
proportional to the prefactor of each harmonic velocity field. The key to enable 
O U random walkers in D Q M C simulation is a trial wave function constructed by 
spherical Gaussians. The basis functions used to construct the FSGO-SGG-type 
trial wave function are spherical Gaussians. 

Table I. Absolute mean deviations in calculated equilibrium bond distances 
(in A) of OUDQMC, BD(TQ) and CCSD(T) methods relative to 

experimental values. 

Molecule Expt.a OUDQMC b BD(TQ)/cc-pVQZ CCSD(T)/cc-pVQZ 

CH 1.1199 1.1202(3) 1.1204 1.1199 

OH 0.9697 0.9697(5) 0.9697 0.9697 

F H + 1.001 1.0013(6) 1.0003 1.0004 

BO 1.205 1.2069(6) 1.2060 1.2082 

CN 1.1718 1.1730(4) 1.1733 1.1702 

CO + 1.1283 1.1222(5) 1.1154 1.1146 

N 2

+ 1.11642 1.1176(5) 1.1176 1.1185 

CF 1.272 1.2727(7) 1.2727 1.2749 

NO 1.1508 1.1512(5) 1.1512 1.1499 

0 2

+ 1.1164 1.1170(7) 1.1170 1.1169 

OF 1.354c 1.3492(8) 1.3526 1.3520 

F 2

+ 1.305d 1.3099(7) 1.3099 1.3078 

Absolute mean deviation 0.0019 0.0021 0.0025 

a: Reference 24. 
b: Reference 10. 
c: Reference 25. 
d: Reference 26. 

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

G
U

E
L

PH
 L

IB
R

A
R

Y
 o

n 
Ju

ly
 4

, 2
01

2 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e:

 D
ec

em
be

r 
31

, 2
00

6 
| d

oi
: 1

0.
10

21
/b

k-
20

07
-0

95
3.

ch
00

3

In Advances in Quantum Monte Carlo; Anderson, J., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2006. 



40 

Table II. Absolute mean deviations in calculated harmonic frequencies (in 
cm1) of OUDQMC, BD(TQ) and CCSD(T) methods relative to 

experimental values. 

Molecule Expt OUDQMC a BD(TQ)/cc-pVQZ CCSD(T)/cc-pVQZ 
CH 2859b 2853(8) 2852 2857 
OH 3738c 3750(12) 3748 3749 
F H + 3090d 3126(18) 3121 3119 
BO 1886d 1906(16) 1908 1889 
CN 2069c 2082(19) 2081 2126 
CO + 2170° 2218(17) 2244 2291 
N 2

+ 2207d 2212(20) 2212 2211 
CF 1308d 1324(18) 1324 1311 
NO 1904c 1922(21) 1932 2106 
o 2

+ 1905c 1928(22) 1931 1933 
OF 1053d 1067(19) 1067 1089 
F 2

+ 1104b 1109(22) 1109 1120 
Absolute mean deviation 18 21 43 
a: Reference 10. 
b: Reference 24. 
c: Reference 27. 
d: Reference 28. 
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Chapter 4 

Rydberg States with Quantum Monte Carlo 

Annika Bande and Arne Lüchow 

Institut für Physikalische Chemie, RWTH Aachen University, 
52056 Aachen, Germany 

Calculations on Rydberg states are performed using quantum 
Monte Carlo methods. Excitation energies and singlet-triplet 
splittings are calculated for the carbon atom. Wave functions 
constructed from open-shell localized Hartree-Fock orbitals 
are used as trial and guide functions. The fixed-node diffusion 
quantum Monte Carlo (FN-DMC) method depends strongly on 
the wave function's nodal hypersurface. The nodal regions 
confined by antisymmetry, excitation, and spurious nodes are 
investigated for selected cases. Their effect on the F N - D M C 
calculations is analyzed and a novel approach for excited 
states calculations with F N - D M C is proposed. 

42 © 2007 American Chemical Society 
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Electronic structure quantum Monte Carlo methods (QMC) are versatile and 
applicable to atoms and molecules of single-reference or multi-reference 
character, strong and weak interactions, as well as ground and excited states. The 
accurate calculation of excitation energies usually requires a method that 
accounts for the correlation energy because the correlation energy is generally 
smaller in the excited than in the ground state. The calculation of excited states 
with Q M C is straightforward, but a few new features arise. In this paper, the 
calculation of Rydberg states with fixed-node diffusion quantum Monte Carlo 
(FN-DMC) and variational quantum Monte Carlo (VMC) is demonstrated for the 
carbon atom. Furthermore, we perform a topological analysis of the wave 
functions with the purpose of properly describing the Rydberg states' electron 
distributions with F N - D M C . 

The emphasis of this work is on using simple guide or trial wave functions 
that allow one to keep the favorable scaling of the Q M C methods for Rydberg 
state calculations. To this end, we use one- or two-determinant guide functions 
whereas most excited state calculations require a multi-determinant ansatz. If 
one- or two-determinant functions are to be sufficient, the orbitals, and in 
particular the Rydberg orbitals, need to be accurate. Kohn-Sham orbitals of the 
open-shell localized Hartree-Fock method (OSLHF) by Gôrling and Delia Sala 
(7-7) are used here, since Hartree-Fock or standard DFT orbitals are generally 
not suitable as Rydberg orbitals. This work extends a previous study of Rydberg 
states where V M C and D M C were used with OSLHF orbitals to calculate atoms 
and molecules (8,9). 

The fixed-node diffusion quantum Monte Carlo method (FN-DMC) is 
predominantly discussed here. In this approach, the energy is calculated in 
regions defined by the nodal hypersurface of the guide function. While the 
regions of the ground state are due to antisymmetry nodes and thus equivalent, 
non-equivalent regions arising from excitation nodes are found in excited states. 
In general they yield different energies, and the correct calculation of excitation 
energies from regional energies is not obvious. For approximate wave functions 
it has recently been demonstrated that non-equivalent regions and energies can 
even occur in the ground state due to spurious nodes arising from limited basis 
sets (JO, II). These nodal artefacts have first been observed for H 2 by Barnett et 
al. (12). 

While excited state calculations with Q M C have been considered as early as 
20 years ago (13-16), several applications of Q M C methods to excited states of 
small molecules have appeared in the last few years (17-22). The exact nodal 
structure of the wave function has been the focus of only a few papers (23-26). 
In this work, we analyze the wave function's nodal structure with respect to 
antisymmetry, excitation, and spurious nodes for singlet (*P) and triplet ( 3P) 
carbon Rydberg states with the configuration 2s22pws (with η = 3 - 6) and the 
ground state. We discuss the effect of non-equivalent nodal regions on the F N -
D M C energies. 
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Quantum Monte Carlo Methods for Rydberg States 

Both the F N - D M C and the V M C methods are described in detail elsewhere 
(27) and will be discussed here only briefly. In the V M C method, the energy is 
calculated from the Rayleigh-Ritz quotient using Monte Carlo integration and 
Metropolis sampling: 

ΕΛ%]-JEL(r) Ιή'Ι dv = (EL(r)) (1) 

with the local energy EL(r) = Ψ τ (Γ ) " ! Η Ψ Τ ( Γ ) . The trial wave function 
Ψ τ = Σ ί ^ Φ ί ( δ Ε > ) β υ consists of one or more Slater determinants O j ( S D ) and a 
positive symmetric correlation or Jastrow factor e u . The all-electron fixed-node 
diffusion quantum Monte Carlo calculations are carried out using the V M C trial 
function as a guide function Ψ 0 in importance sampling. Branching and 
weighting is done as suggested by Umrigar et al. (28). The energy is calculated 
with the mixed estimator (28,29). 

Formally, fixed-node D M C solves (numerically) exactly the electronic 
Schrôdinger equation with the nodes of Ψ 0 as additional boundary condition: 

/ ^ 0
Ο ) ( Γ ) = ^ 7 ) ( Γ ) Ψ 0

Ο ) ( Γ ) for reQj (2) 

and Ψ 0
( 7 ) ( Γ ) = 0 for r i Q y 

The Hamiltonian is defined in M 3 N for an N-electron system. The 3N-\ 
dimensional nodal hypersurface given by Ψ ο = 0 partitions E 3 N in Κ regions Qj, 
j = I...K that are defined as disjoint connected open sets (with either Ψ > 0 or 
Ψ < 0). Two regions are considered equivalent i f they are related by an electron 
permutation. A unique F N - D M C solution exists only i f all regions Ω| yield the 
same ground state energy E Q ^ from Η Ψ® = Ε Ϋ ) Ψ ϋ ) . Particularly important is 
Ceperley's proof of the tiling theorem (25), which says that for the exact ground 
state all Qj are equal in shape and size and are related by electron exchange. In 
this case, a F N - D M C calculation can be started with walkers either in one region 
or in many regions. A l l calculations would yield statistically the same energy. 
Not every approximate ground state function has only equivalent regions, and we 
denote the additional regions "spurious" as they are due to spurious nodes that 
eventually vanish as the guide function converges toward the exact wave 
function. Non-equivalent regions even in exact wave functions are expected for 
excited states. They arise from excitation nodes. The non-equivalent regions 
necessarily yield the same energy i f the nodes are exact, but in general different 
regional energies Ε 0

ΰ ) are obtained i f the nodal hypersurface is only 
approximate. 
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In the case of different regional energies E 0 , F N - D M C is in principle 
capable of determining all E 0

( i ) by starting the calculation with walkers in region 
Ω] only. The standard F N - D M C calculation starts with walkers distributed over 
all space. In this case, the lowest energy of all regions initially populated is 
obtained: E 0

( F N ) = minj Ε 0

ϋ ) . 
The excitation nodes of atomic Rydberg states are easier to rationalize than 

other excitation nodes. If the nodes are defined by a Slater determinant and one 
electron has a much larger distance from the nucleus than the others (the 
"Rydberg electron"), the Slater determinant can be factorized approximately into 
the Rydberg orbital and a Slater determinant of the other electrons by using 
Laplace's expansion: 

The excitation nodes can thus be described at least approximately by the 
nodes of the orbital (|>Ryd which is of s-type for the carbon Rydberg states 
considered here. 

The Rydberg excitation energies into the l P and 3 P 2p«s states of the carbon 
atom (with η = 3 - 6) and the singlet-triplet splittings were calculated using the 
variational and the diffusion Monte Carlo algorithms of the program amolqc by 
the authors (30). 

The Jastrow factors applied in the V M C calculations were indeed 
variationally optimized for all the states, but to minimize the error introduced by 
different Jastrow parameters all the excited states were calculated using both an 
optimized singlet and an optimized triplet Jastrow factor. Excited state energies 
are then represented as the mean value from the two V M C energies, singlet-
triplet splittings are evaluated for triplet and singlet states with the same Jastrow 
parameters and then averaged. Large steps with low acceptance ratios were 
employed to improve the spatial sampling when one electron has a large distance 
to the nucleus. 

Furthermore we performed a regional analysis. Based on prior work (8,9) 
D M C runs were performed using an initial walker that is known to force the 
calculation to come out with a higher energy than the expected E 0

a ) . In every step 
the geometrical data of the walkers are collected and analyzed after a certain 
interval (here: every 25 blocks of 250). It turned out to be most meaningful to 
characterize nodal regions Qj by their energy E0® and the mean distances (r) of 
all the electrons. A similar distance analysis has been done previously by Glauser 
et al. for atomic ground states (24). 

To answer the question about the significance of these different regions in 
excited state F N - D M C calculations, a natural way to calculate the F N - D M C 
energy for excited states is to weight the regional energies Ε 0

ϋ ) according to Ψ 2 . 
We sample this walker distribution in a V M C calculation with 50 random 
walkers using an initial walker at a certain distance. Subsequently 50 D M C 
calculations were performed using the final walker positions from V M C as initial 
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walker positions each for one calculation. It should be noted that long runs were 
required to obtain converged V M C results for the excited states. We are not 
aware of any excited state calculation that has been done in this fashion, so we 
denote this novel procedure here FN-DMC(n) to distinguish it from the standard 
method, designated here FN-DMC(s). By default the initial walker ensemble in 
FN-DMC(s) is distributed according to Ψ 2 , where thus most regions Qj are 
initially populated. The weighting or branching process in D M C results in the 
decay of the walker population in all high energy regions. Therefore, the final 
F N - D M C result is Ψ 0

( 1 ) with E 0

( 1 ) (assuming regions ordered with increasing 
energy) i f Ω! is initially populated. This procedure may lead to unsatisfactory 
results i f Ω! is not one of the most probable regions. 

Computational Details 

In the F N - D M C calculations 5 108 random walk steps were made with a 
time step of 0.003 a.u. For V M C we employed 4 108 random walk steps. The 
Jastrow parameters were variationally optimized for each state under 
consideration. Each state was calculated at least five times for both methods to 
obtain statistically independent data. 

The wave functions used in all calculations were derived previously (8,9). 
The OSLHF calculations (6,31) were performed using a special version of the 
program package Turbomole (32-36). The Lee-Yang-Parr (LYP) (37) correla
tion functional was employed. 

As basis set we used a modified version of the Dunning cc-pVTZ basis 
(38,39) augmented with several diffuse functions (9). To correct for the missing 
electron nucleus cusp of contracted GTOs a method of one of the authors was 
used (30). 

The singlet state requires two determinants constructed from OSLHF Kohn-
Sham orbitals, for the triplet we calculated the Ms= 1 state with one determinant. 
The trial and guide functions are products of these configuration state functions 
and variance optimized Schmidt-Moskowitz Jastrow factors of the nine-term 
type (40). 

Results and Discussion 

The excitations of the carbon atom into the four lowest 3 P and ! P Rydberg 
states with the electron configuration 2p«s (with η = 3 - 6) have been calculated 
with V M C and F N - D M C . 

In our previous calculations (9) the excitation energies and singlet-triplet 
splittings have been obtained in very good agreement with experimental data, but 
the F N - D M C splittings have been found qualitatively wrong for several electron 
configurations. 
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The V M C results indicated that the OSLHF wave function extended by a 
Schmidt-Moskowitz Jastrow factor is entirely suitable for Rydberg excited 
states. It appeared that the main difficulty was the nodal structure of excited 
state wave functions. 

Nodal Regions of the Carbon Atom 

For the Rydberg states of the carbon atom we have to consider excitation 
nodes as well as nodal artefacts. The latter have been found by Hachmann et al. 
in Hartree-Fock wave functions of Be and B e 2 + to be dependent on the size and 
flexibility of the basis set (70,77). 

We attempted to better understand the OSLHF wave function of the 3 P 
ground state, denoted here G, and the highly excited states 3 P (2p6s), here T4, 
and ! P (2p6s), S4, by characterizing their nodal regions Ω| as described before. 
The Tables I to III display examples of different regions Ω,. 

In all three cases the region lowest in energy (Ω,) is the one in which the 
electrons are closest to the nucleus. Note that in S4 the electrons are all at the 
same mean distance demonstrating the possible exchange of "core" and 
"valence" electrons. Per contra the two down-spin electrons (5 and 6) in the 
triplet states are separated by a node (in this case exactly r 5 = r 6, because the spin 
down electrons occupy Is and 2s orbitals only (41)). 

For the two excited states S4 and T4, the regions Ω 2 to Ω 4 are characterized 
by one large average electron-nucleus distance. The distances are very similar 
for the singlet and the triplet state and can be understood well when evaluating 
the excitation nodes according to Eq. 3. The radial distribution functions 
p(r) = 4 π r 2 <|>6s(r)2 for the OSLHF 6s orbitals are shown in Figure 1 for the S4 
and T4 states. 

Table I. Nodal regions of the 3 P ground state (G) 

Ω, Εοϋ> (η) ('>> Μ 
Ω, -37. 8301(4) 1.4 1.4 1.4 1.4 1.6 0.3 

Ω 2 -37. 4161(9) 47 1.2 1.2 1.2 1.6 0.3 

Ω 3 -37. 1368(5) 1.3 1.3 1.3 1.3 24 0.3 

Ω 4 -34. 837(1) 44 43 26 0.3 1.4 0.3 

Ω 5 -26. 3212(6) 1.1 1.1 1.1 1.1 24 2.2 

NOTE: Regional energies are given in £ h , electron-nucleus distances <r> for 
up-spin and (7) for down-spin electrons in bohr. 
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Table II. Nodal regions of the 3 P 2p6s state (T4). 

Ω { Εο°> <Ί> <ι) W G) 
Ω, -37. 4332(4) 1.8 1.7 1.7 1.7 1.5 0.3 
Ω 2 -37. 4315(5) 41 1.1 1.1 1.1 1.5 0.3 
Ω 3 -37.4281(6) 20 1.1 1.1 1.1 1.5 0.3 
Ω 4 -37. 4276(5) 10 1.1 1.1 1.1 1.5 0.3 
Ω 5 -36. 4630(6) 1.6 1.6 1.6 1.6 15 0.3 

NOTE: Regional energies are given in £ h , electron-nucleus distances (r> for 
up-spin and (r) for down-spin electrons in bohr. 

Table III. Nodal regions ofthe *P 2p6s state (S4). 

Qi Ep® <r,) (r2) (r3) ® ® fc) 

-37.4378(5) 1.5 1.5 1.5 1.5 1.5 1.5 
-37.4311(4) 43 1.5 0.3 1.1 1.1 1.1 
-37.4280(3) 20 1.5 0.3 1.1 1.1 1.1 
-37.4249(4) 10 1.5 0.3 1.1 1.1 1.1 
-36.563(1) 38 1.0 0.7 35 1.4 0.3 
-36.5537(8) 46 1.4 0.3 46 1.4 0.3 

NOTE: Regional energies are given in £ h , electron-nucleus distances (r) for 
up-spin and (r) for down-spin electrons in bohr. 

The observed average distances coincide well with the three highest maxima 
of that function suggesting the interpretation of the nodes between Ω 2 , Ω 3 , and 
Ω 4 being excitation nodes. Even the larger average of the highest peak of the 
radial distribution function for the S4 state is found as a slightly larger (η) in Ω 2 . 
The regions Ω! correspond analogously to the first maximum of Figure 1. 
According to the radial distribution function, Ω 2 is the most important region for 
S4 and T4 and should contribute to the F N - D M C result, whereas Ωι is not 
expected to be important at all. It should be emphasized that Ω 2 does not have 
the lowest energy, as might have been anticipated. 

The higher regions Ω 5 and above cannot be explained by excitation nodes 
with Eq. 3 and are thus due to spurious nodes. The energy in these regions is 
substantially higher. Neglecting these regions we are left with regional energies 
that span 5 m £ h (T4) or even 13 mE h (S4). For the ground state there is only 
one way to explain the different regions Ω 2 and higher and this is by spurious 
nodes. So we offer here an alternative method for detection of nodal artefacts in 
ground state wave functions. 
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0.041 « 1 1 1 1 1 Γ ^ - Ι 1 Γ 

r/bohr 

Figure 1. Radial distribution function for OSLHF 6s Rydberg atomic orbital 
(solidfor S4, dashed for T4). 

With these results we can now understand our previous calculations with the 
FN-DMC(s) approach (9). Since all regions have been populated in the initial 
walker ensemble we have consistently obtained E 0

( I ) and thus a singlet energy 5 
mE h below the corresponding triplet energy (see Tables II and III). Calculating 
instead the singlet-triplet splitting with Ω 2 , we obtain 0.4(6) mE h consistent with 
the experimental value of 0.4 mEh (42). On the other hand, the excitation energy 
is increased for Ω 2 (10.89 eV) although the excitation energy ΐοτΩι in T4 
(10.80 eV) is larger than the experimental value (10.70 eV). This investigation 
demonstrates that seemingly good F N - D M C excitation energies might be due to 
unimportant regions with erroneously low energies. 

Rydberg Excitations of the Carbon Atom 

The observations discussed before make clear that excited states need to be 
treated in more detail according to the walker distribution in the nodal regions Ωj 
resulting from the excitation and spurious nodes. A way to do this is to perform 
the previously described FN-DMC(n) calculation. This approach is discussed 
here for three examples: the ground (G), and the highest triplet (T4) and singlet 
(S4) state. Proceeding with a regional topological analysis and based on themean 
energies in the observed regions, the histograms (Fig. 2) for T4 and S4 can be 
plotted. 

As expected for S4, region Ω 2 is the most important with a frequency of 
appearance of 67 % followed by Ω 3 (29 %) and Ω 4 (4 %). 

T4 is similar as can be seen in Figure 2 with 53 % occupation of Ω 2 , 29 % 
Ω 3 , 16% Ω 4 and 2 % Ωι. Here the regions Ω 3 and Ω 4 are unequivocally 
distinguishable by geometry but not by energy. 
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Figure 2. Histograms for the T4 (up) and the S4 (below) states. The width of the 
boxes represents twice the standard deviation. 

In the ground state the region Ω! is occupied by 100 %. The regions due to 
spurious nodes have neither been populated in the ground state nor in the excited 
states investigated here with a Ψ 2 sample. 

A proof for convergence of the V M C calculation and thus the Ψ 2 

distribution is the fact that distant electrons have changed positions with near 
core electrons which is only possible i f Ω! has temporarily been occupied. The 
same way of execution is now employed for all states and Rydberg excitation 
energies and singlet-triplet splittings are recalculated in Table IV from weighted 
averages of the absolute energies. The error given is the standard deviation of the 
mean of all F N - D M C calculations. This error increases with higher excitations of 
the Rydberg electron, because there more regions with different energies are 
populated. In order to obtain the same error as in FN-DMC(s), more F N - D M C 
steps are required. 
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The FN-DMC(n) excitation energies are compared to OSLHF, V M C , F N -
DMC(s), and experimental values, the same is done for the singlet-triplet 
splittings. Experimental data are corrected for spin-orbit coupling. Note that the 
ground state energy actually remained unchanged since only Ωι was sampled 
here. 

OSLHF overestimates the excitation energy by about 0.25 eV and the 
singlet-triplet splittings by 0.01 eV to 0.03 eV. FN-DMC(s) improves it, 
especially for the higher states and the singlets (-0.02 eV to 0.22 eV). The *P 
(2p6s) configuration is the only one where the excitation energy is found smaller 
than in the experiment. This behavior unfortunately causes too small and even 
negative singlet-triplet splittings. 

Table IV. Rydberg excitation energies and singlet-triplet splittings. 

OSLHF VMC DMC(s) DMC(n) Expt.(42) 
3 P (2p3s) 7.71 7.60(1) 7.716(4) 7.716(2) 7.48 
'P (2p3s) 7.93 7.78(1) 7.884(4) 7.890(2) 7.68 

3P(2p4s) 9.90 9.67(1) 9.815(5) 9.847(2) 9.68 
'P (2p4s) 9.96 9.71(1) 9.780(6) 9.904(4) 9.71 
3 P (2p5s) 10.65 10.39(1) 10.505(5) 10.546(4) 10.38 
'P (2p5s) 10.67 10.40(1) 10.408(4) 10.547(5) 10.40 

3 P (2p6s) 10.99 10.79(1) 10.803(7) 10.890(7) 10.70 
'P (2p6s) 11.01 10.80(1) 10.668(7) 10.891(7) 10.71 
2p3s 0.22 0.18(1) 0.168(3) 0.178(3) 0.20 
2p4s 0.06 0.04(1) -0.035(6) 0.056(4) 0.03 
2p5s 0.03 0.01(1) -0.096(4) 0.021(6) 0.01 
2p6s 0.02 0.01(1) -0.136(8) 0.00(1) 0.01 
NOTE: Energies for the excitations from the3P carbon atom ground state to Ryd
berg states and singlet-triplet splittings in eV. The standard deviation for the last 
digit is given in parentheses. 

Since the results for the F N - D M C excitation energies with OSLHF wave 
functions looked rather promising, we performed V M C calculations of a similar 
type. With independence of the complicated Rydberg states nodal structure, it 
was possible to improve all the calculated energy differences again. Excitation 
energies deviate by at most 0.12 eV from experiment, some exactly reproduce it. 
The singlet-triplet splittings are in excellent agreement with experiment. 

For FN-DMC(n) the excitation energies are not improved over the F N -
DMC(s) results for the reason discussed above, whereas the singlet-triplet 
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splittings are now as good as those of the V M C calculations. Reliable F N - D M C 
calculations of excited states require therefore a careful analysis of the nodal 
regions and their energies. As a practical approach, we suggest the procedure 
employed here, i.e. starting several short independent F N - D M C runs from the 
individual walkers of a Ψ 2 V M C distribution. 

Conclusions 

Rydberg states of the carbon atom have been studied. Using guide functions 
described in terms of configuration state functions from OSLHF orbitals, the 
OSLHF excitation energies can be improved with V M C and with both discussed 
F N - D M C approaches, respectively. Standard fixed-node D M C is not able to 
describe the singlet-triplet splitting reliably for the carbon Rydberg states 
whereas V M C and the novel F N - D M C method for excited states produce good 
agreement with experiment. 

The nodal regions of the ground state and the 2p6s triplet and singlet wave 
functions and their effect on F N - D M C calculations were investigated. Different 
regional energies E 0

( i ) have been observed depending on the initial walker. It was 
demonstrated that cases where E 0

a ) > E 0

( F N ) can occur. In the ground states they 
must be due to spurious nodes and are qualitatively shown not to play a role for 
standard F N - D M C calculations. 

Contrarily the excitation nodes observed in the two 2p6s states that separate 
the regions in which one electron only is at higher distance from the nucleus 
influence the F N - D M C result. We propose to include regional energies E 0 ^ of 
these cases weighted according to a Ψ 2 distribution. 
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Chapter 5 

Linear-Scaling Evaluation of the Local Energy 
in Quantum Monte Carlo 

Brian Austin1,2, Alán Aspuru-Guzik1, Romelia Salomón-Ferrer1,2, 
and William A. Lester, Jr.1,2 

1Kenneth S. Pitzer Center for Theoretical Chemistry, Department 
of Chemistry, University of California at Berkeley, 

Berkeley, CA 94720-1460 
2Chemical Sciences Division, Lawrence Berkeley National Laboratory, 

Berkeley, CA 94720 

For atomic and molecular quantum Monte Carlo calculations, 
most of the computational effort is spent in the evaluation of 
the local energy. We describe a scheme for reducing the 
computational cost of the evaluation of the Slater determinants 
and correlation function for the correlated molecular orbital 
(CMO) ansatz. A sparse representation of the Slater 
determinants makes possible efficient evaluation of molecular 
orbitals. A modification to the scaled distance function 
facilitates a linear scaling implementation of the Schmidt-
Moskowitz-Boys-Handy (SMBH) correlation function that 
preserves the efficient matrix multiplication structure of the 
S M B H function. For the evaluation of the local energy, these 
two methods lead to asymptotic linear scaling with respect to 
the molecule size. 

© 2007 American Chemical Society 55 
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In the quantum Monte Carlo (QMC) method (7-7), the expectation value of 
the Hamiltonian (H> is computed as a statistical average of the local energy of a 
trial wave function, Ψτ(&), where R denotes the 3N coordinates of the N-particle 
system. 

(i) 

Averages of this quantity provide an estimator of the energy of the system, 

E*(EL)= H m - M ^ R , ) . (2) 

where N s is the number of sample points R, and the local energy is evaluated 
during the random walk. The points R, are sampled from a probability function 
flR, τ), such as 1 F T 2 ( R ) for variational Monte Carlo (1). Presently, the more 
commonly used Q M C version is the diffusion Monte Carlo (DMC) that yields 
time-independent solutions of the Schrôdinger equation from an imaginary time 
stochastic formalism (8). 

For most molecular applications, the correlated molecular orbital (CMO) 
wave function form is used. 

Ψ Γ =DxF = [eui»] (3) 

Here D is a linear combination of Slater determinants and F is a correlation 
function that depends on inter-particle distances. The determinants DCT„ where σ 
denotes α or β spin, are usually constructed with molecular orbitals (MOs) 
obtained from a previous ab initio calculation such as Hartree-Fock (HF), multi-
configuration self consistent field theory (MCSCF), or density functional theory 
(DFT). Interactions between electrons in a molecule diminish exponentially as 
the distance between them increases (9). In recent years, linear diffusion Monte 
Carlo (LDMC) methods (10-12) have been introduced to take advantage of this 
property to reduce the computational demands of Q M C to linear dependence on 
system size. Williamson et al. (10) developed a linear-scaling method in a plane-
wave basis expansion for periodic systems and applied the approach in several 
studies (13-15). Alfê and Gillan (12) developed a method that employs non-
orthogonal localized orbitals in a plane-wave basis expansion that further 
improves efficiency. 

Manten and Luchow (ML) (11, 16) have presented a similar method that 
uses Gaussian-type orbitals (GTOs). M L have also shown how parts of the D M C 
algorithm, including the evaluation of the Coulomb potential and inter-particle 
correlation function, can be made to scale linearly with system size (11, 16). In 
the present work, we address the two most important contributions to the 
computational cost of wave function evaluation, namely, the evaluation of the 
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Slater determinant (17) and that of the correlation fonction. We will describe a 
fast implementation of these two steps in the following two sections. Progress 
towards deeper understanding of results from Q M C is described in the last 
section. 

Fast evaluation of the Slater determinant 

One purpose of L D M C is to decrease computational time by reducing 
computation associated with wave function evaluation. The approach of 
Williamson et al. (10) has the potential of near-optimal efficiency because only a 
single three-dimensional spline (3DS) evaluation is required for a given 
molecular orbital (MO). Maximally-localized Wannier (MLW) functions of 
systems using effective core potentials (ECPs) are smooth functions that can be 
described accurately with 3DS. All-electron MOs expressed in a Slater or 
Gaussian basis set are rapidly-varying with distance, and their representation 
with 3DS is memory intensive due to the cubic scaling of 3DS memory 
requirements with M O complexity. On the other hand, Gaussian or Slater basis 
sets are more compact than plane waves and therefore amenable to being 
evaluated explicitly without substantially increasing computational cost as 
proposed by M L (11, 16). We improve upon the work of M L by introducing a 
sparse representation of the Slater matrix and cutoff criteria that derive from the 
sparse representation. The method proposed here can be extended to 3DS-based 
methods to achieve further computational efficiency. 

Evaluation of D of Eq. 3 requires the construction of Slater matrices, DCT„ 
and the corresponding determinants D°, = det(D°,). Note that naive construction 
of the Slater matrix leads to cubic scaling with system size. 

The main feature of the method is the use of a three-dimensional grid to 
store the non-zero contributions to the Slater matrix. The use of the grid does not 
affect the accuracy of the wave function because the orbitals are evaluated using 
accurate one-dimensional representations of Slater basis functions. The memory 
requirements for the grid are of the order of a few megabytes for the polyalanine 
systems studied (17). 

Evaluation of determinants D°, involves an additional cubic step associated 
with the inversion of D a , (18). Although M L proposed using a sparse linear 
algebra routine for this purpose, an optimized algorithm for dense matrices (19) 
is used in the present approach because inversion of D°, is not a computational 
bottleneck for the size of systems treated here. 

Slater matrices require evaluation of MOs for all electrons of a given spin σ. 
An M O φ is expanded in a basis of atom-centered functions, typically GTOs or 
Slater-type orbitals (STOs), 
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Nbas 

The Ο μ ι elements form the coefficient matrix C. The atom-centered functions χ 
are usually expressed as linear combinations of primitive functions φ, 

Ncont 

It may seem that construction of a Slater matrix is cubic scaling, because the 
evaluation of Eq. 5 requires iteration over basis fonctions, MOs and positions. 
However, M O evaluation can be made linear with system size by the use of 
localized MOs (LMOs) coupled with a sensible cutoff of L M O spatial extent. 
These two steps are essential for achieving linear scaling with system size. 

Most ab initio computer programs employ orthogonal LMOs. The 
orthogonalization restriction has the disadvantage of producing 
orthogonalization tails, i.e., small contributions to the LMOs at centers that lie 
far from the main contribution to the L M O (20). To accelerate the onset of linear 
scaling, M L removed the orthogonalization tails (11). In this study, we chose not 
to do so in order to preserve folly the nodal characteristics of the LMOs. 

We next present a brief explanation of the steps involved in the calculation 
of the Slater matrix. The first step required for the sparse representation of the 
Slater matrix is to generate a pre-sorted coefficient matrix. For CMOs of the 
form of Eq. 3, Slater matrices are constructed separately for α and β electrons 
leading to sorted coefficient matrices, K p

; and Kp„ built from C p , and Cp„ 
respectively. The rows of K" run over the basis functions, while the columns run 
over the L M O coefficients sorted by their absolute value, 

| κ ^ > | κ 2 ^ > . . . > κ „ J (6) 

It is convenient to construct an auxiliary array that maps indexes of K a , and K p

; 

to the indexes of the Slater matrices D". This step facilitates filling the columns 
of the Slater matrices in the correct order. 

Gr id Generation 

For an electron located at r, the value of a L M O Φ,(Γ) is a sum of products 
Ρμζ of basis functions and L M O coefficients for each L M O , 

Nbas Nbas 

In the present L D M C approach, we only sum over products that are greater than 
a numerical threshold ε ς . This threshold is directly connected to the numerical 
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precision of the truncated trial wave function. This is the single most important 
parameter for the onset of linear scaling. 

When an electron is evaluated at position r, the nearest point from a 3D grid 
is referenced. Each 3D grid element is associated with a compressed 
representation of the Slater matrix that describes the non-zero elements of a 
column of the Slater matrix evaluated at the particular volume element. The 
compression scheme is depicted in Figure 1. 

Figure 1: The compressed matrix representation used for this work The non
zero basis function index is stored along with the index of the smallest LMO 

coefficient that multiplies the basis function. These pairs of indexes are 
designated by an χ andfor the example correspond to (2,5)(3,4)(6,6)(7,7)(8,4). 

Besides the numerical threshold ec, a second parameter is introduced. It is 
the fraction (f) of products ρ μ ι retained. The parameters / a n d ec are related. For 
small thresholds, a higher fraction of products can be discarded without change 
in the value of the wave function. At higher thresholds, a smaller fraction of 
products can be removed from the calculation. 

Determinant Evaluation Algorithm 

In D M C electrons can be moved one at a time (8), or all at the same time 
(21). For this discussion, we assume that the electrons are moved one at a time. 
On this basis we present a procedure for the construction of a column of a Slater 
matrix corresponding to an electron located at a position r. 

With C M O wave functions, electrons have a given spin σ throughout the 
simulation. As soon as one specifies the electron index, and therefore spin, one 
can use the grid and sorted coefficient matrix associated with the particular spin. 
With the electron spin specified, the grid element corresponding to the spatial 
location is identified, and then a sequence of doublets (μ 1 ? /Ί), (μ 2 , ϋ - ί μ η , Q is 
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Require: x,y,z c Grid {ensure that the point is inside the grid.} 
DoubletList=Gricf(x,y,z) 
SortedCoefficients = PresortedCoefficients* 
SortKey = SortKey0 

SlaterMatrix = SlaterMatrixa 

while Doublet from DoubletList: do 
(M,imJ=Doublet 
Evaluate ZM(x,y,z) 
for i=0 to i=imax do 

c = SortedCoefficients (μι) 
j = SortKey(μι) 
SlaterMatrix(j,k) = φ/χ,γ,ζ) = φ/χ,γ,ζ) + c*zM(x,y,z) 

end for 
end while 

Figure 2: Algorithm for the evaluation of a column k of the Slater matrix 
for an electron of spin aata point r = [x, y, z\ 

read. Here, μι, μ 2,..., μ η are the indexes of the η non-zero basis functions, and iu 

i2, in are the maximum L M O coefficient indexes needed to evaluate the 
products ρμ/. The Slater matrix columns are updated in iterations over electrons. 
A pseudo-code representation of the algorithm is illustrated in Figure 2. 

Rapid Evaluation of Primitive Basis Functions 

STOs have been shown to be advantageous for Q M C owing to their correct 
asymptotic behavior at short and long electron-nucleus distances. To employ 
wave functions expanded in an STO basis, we use the Amsterdam Density 
Functional (ADF) package (22). For rapid evaluation, the radial components of 
the contractions χ, are interpolated using cubic splines, and cut-off at an 
appropriate distance from their center. Cut-off values are determined so that the 
local energy of a fixed sample of walkers changes by less than a prescribed 
percentage. Splines make possible the representation of a linear combination of 
all STOs belonging to a given contraction by a single spline function, with the 
result of reducing the computational cost. For the remainder of this discussion, 
we will refer to such representations of contracted STOs as basis functions. 
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Linear-Scaling Evaluation of the Correlation Function 

Rapid evaluation of the correlation function is equally important to obtain a 
linear scaling Q M C algorithm. The correlation function of Schmidt and 
Moskowitz (SM) (23), which stems from the form suggested by Boys and 
Handy (BH) (24) is displayed in Equation 8. 

atoms 

υ-ΣΣ°»Συ% 
μ A i<j 

where, 

u s , = + f!s72" y? ; m = ^ (8) 
A n important step in accelerating evaluation of the S M B H correlation 

function was taken by M L . These authors changed the scaled distance function 
to F = l - e x p [ - û r ] , leading to a shorter cutoff distance in their linear scaling 
algorithm. 

A further change to F is required for the present approach. This change is 
motivated by examining the asymptotic behavior of the three-body terms in the 
S M B H expansion. Consider the (lmn)=(011) term: 
UvA = (l-exp[-ary])(\-exp[-arjA]). Because M L ' s F approaches unity at 

large distances, Ui j A reduces to the two- body (lmn)=(010) term when electron i 
is separated from the jA pair, leaving many nonzero terms in the S M B H 
function. To reduce the number of nonzero terms, we simply shift F so that its 
asymptotic value is zero: F = - exp [ - a r ] . 

The consequences of this change are simple to interpret. Although physical 
arguments would seem to favor an ansatz where three-body terms reduce to two-
body terms, these extra terms are merely redundant descriptions of the two-body 
correlations included in the (lmn)=(010) term. For two-body terms, this changes 
only the normalization of the wavefimction. Linear dependence among all the 
terms is also reduced. Our modification to F may also be alternatively viewed 
as a generalization of the Sun-Lester correlation function (25), which is included 
as the (lmn)=(001) term of the S M B H expansion. 

The next step in the development of our linear scaling algorithm requires 
recognition that the S M B H function can be rewritten as a trace over a matrix 
product, 

μ A i*j 

Simpler terms where 1, m, or η are zero can be handled by deleting the 
appropriate matrix from Equation 9. The term where m and 1 are swapped in 
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Equation 8 is unnecessary in the matrix form because the sum over / and j is no 
longer lower triangular. It is easy to exclude terms where /=y by setting diagonal 
elements of the matrix to zero. 

Because B L A S (26) libraries make matrix operations particularly efficient, 
we observed speedups of at least a factor of ten relative to our initial 
implementation after switching to a matrix-based implementation. Matrix 
multiplication, however, scales cubically with system size. To achieve linear 
scaling, we take advantage of the sparsity in the r matrices that was created by 
our modification to the scaled distance function. 

Figure 3 sketches our sparse matrix multiplication routine. A distance-based 
cutoff is used to determine which Y elements need to be computed. By limiting 
operations to electrons near each atom, we implicitly compress the nonzero 

elements of ï ^ and ïvinto a set of three 0(1) blocks (Âf" M 1 , ^ ' M 1 a n d rf[A]) 
for each atom. The cost of the matrix operations for each atom is therefore 0(1), 
yielding an overall linear scaling algorithm. 

for each atom, A do 
Make a list of electrons near A . 

Build the vectors of e-n distances η"1^ and TJ^. 

Build the matrix of distances T^A^ for electrons near A . 

Perform the matrix operations: Όμ

Α = %fflA^AlrJ[A] · 

Increment U:U = U + 0μ^ϋμ

Α . 

end for 

Figure 3: Algorithm for computing one term in the SMBH expansion 
using sparse matrices. 

Application to Biological Systems 

As an example of the capability of treating large systems, we show some 
results for calculations on two biomolecules present in Photosystem II, 
bacteriochorophyll (Bchl) and spheroidene (Spo), containing 304 and 314 
electrons respectively. Under high light conditions, the generation of chlorophyll 
triplet states and singlet oxygen, l 0 2 , can increase dramatically due to the fact 
that the light flux exceeds the amount of light that the reaction center is able to 
process (turn-over capacity). Carotenoids help protect the organism by non-
photochemical quenching (NPQ), which dissipates the excess excitation energy 
of singlet oxygen. If carotenes are absent, chlorophyll is readily oxidized, 
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leading to the organism's death. Several scientific questions about the 
photoprotection mechanism remain unanswered. The ground-state to lowest-
triplet-state excitation energies of both molecules as well as the energy transfer 
rate between the systems have not been determined. At present, DFT is not 
sufficiently accurate to answer these questions. A rigorous electronic structure 
method that accurately treats electron correlation is needed, but, as noted, basis-
set correlated methods scale too steeply with system size to be applicable. D M C 
presently offers the only feasible option for the accurate calculation of these 
quantities. 

To understand chemical processes, it is useful to have information besides 
total energies. Electron localization methods provide insight on the behavior of 
electrons in molecules. Properties such as electron density, spin density and the 
electron pair localization function (EPLF) (27) can routinely be computed by 
post-processing. The EPLF provides a quantitative description of electron 
pairing in molecular systems and has similarities to the electron localization 
function (ELF) of Becke and Edgecombe (28). The Q M C method is a 
particularly well suited approach for obtaining such information because the 
simple and general definition of EPLF is easily evaluated in Q M C . 

In the next section, some details on the speedup in calculating the local 
energy obtained by the application of the techniques mentioned above are 
presented. Results for spheroidene as well as other molecules of biological 
importance are given. 

Results and Discussion 

Local energies for the spheroidene molecule were computed with a series of 
different grid sizes. Our tests show a factor of 10 speedup with respect to a 
standard calculation for a grid of 2660 elements. The basis-function cut offs 
were in the 11.0-15.0 a.u range, following the criteria for STOs given above. The 
grid memory requirements are modest; for spheroidene, a 20520 element grid 
requires 3.4 M B of R A M . 

C P U timings for a sample of eight molecules of biological interest have 
been obtained. We chose the series of 2-,4-,6- and 8-polyalanine in an alpha 
helix conformation. We also selected four other molecules with different 
conformations to show dependence on geometrical factors. For the calculation of 
the eight molecules, we used a grid element length of 2 a.u. and a cutoff 
threshold of ec = l x l 0" 1 2 . The whole fraction (f= 1.0) of products was preserved 
for all calculations. 

Geometrical effects can be compared as well. With fewer basis functions per 
volume element, linear molecules require less computer time than 2D or 3D 
arrangements. For example, the spheroidene molecule required 75% of the CPU 
time of 8-alanine, which has the same number of electrons. A model 
bacteriochlorophyll with ten fewer electrons required 124% of the time 8-
alanine. 
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The C P U timings for the evalution of the Slater determinant for 8 molecules 
are given in Figure 4. After around 80 electrons, the C P U time for filling the 
Slater matrices scales linearly with the number of electrons. A series of linear 
alkanes have been used to determine C P U scaling for evaluating the S M B H 
correlation function. Figure 5 presents timing data using a matrix-based 
algorithm with dense F matrices and the linear scaling algorithm with the 
present F .For these tests, we set α = 4.0 and determined empirically that a 
cutoff of 4.0 a.u. affected local energies by less than 10"7 Hartrees. The sparse 
algorithm is linear scaling for all molecules studied and is faster than the dense 
algorithm for molecules with more than three carbon atoms. 

Figure 6 presents slices of the EPLF function for spheroidene in the ground 
state singlet and the first excited triplet state in the z=0 plane. The different 
values represent the different levels of electron pair localization for that 
particular region, larger values indicate higher degree of localization. Most of 
the EPLF values obtained for this system are less than 0.1, which indicates a 
high level of derealization in this system due to its conjugated polyene 
structure. Important differences can be seen between the singlet and the triplet 
state. While the singlet appears to have no spin-polarized (gray) regions, the 
triplet state does possess such regions near the outer boundary of the molecule. 
Grey regions show where excess alpha electron density is paired. 

Conclusions 

In this study, we have presented and demonstrated a novel approach in 
quantum Monte Carlo for the evaluation of the local energy of molecular systems 
described by atom-centered basis functions. Our approach exploits the structure 
of the wave function representation and evaluates the wave function using sparse 
linear-algebra methodologies. The product of basis functions and molecular 
orbital coefficients p^, truncated at ec =10"12 seems to be a good choice for 
retaining the high accuracy of the wave function while obtaining a significant 
speedup in the computation for the systems studied. For increasingly large 
molecules, the number of operations needed to evaluate the wave function and 
the local energy at each point of the simulation increases. In the past few years, 
major advances have been achieved in this laboratory that have made possible 
the treatment of systems considerably larger than those that could be addressed 
few years earlier. Development of more efficient codes and, in particular, codes 
that scale linearly with system size, will have significant impact on the kind of 
systems that will become feasible to study with Q M C . The ability to complement 
the information given by the energy with electron distribution and electron 
localization functions obtained from a high accuracy method such as Q M C 
should prove useful in providing further insight on chemical properties and 
processes. 
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Number of non-hydrogen atoms 

Figure 4: Computer time for filling the Slater matrices, D" and DPj, as a 
function of the number of non-hydrogen atoms for different biological 
molecules. Data for a series ofpoly-alanine molecules (2-,4-,6- and 8-

polyalanine) is plotted as circles. (I) hexatriene, (2) capsaicin, (3) 
bacteriochlorophyll and (4) spheroidene are designated by squares. 

The CPU time for polyalanine chains scales linearly with system size. 
Data are from reference (17). 
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Figure 5: Computer time for evaluating the SMBH correlation function versus 
alkane length. The dense matrix-based algorithm (solid line) scales roughly 
cubically with system size. The sparse matrix based algorithm (dashed line) 

scales linearly. 
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Figure 6: Plot of the ζ =0 plane of the EPLF function values for Spo in the 
ground state singlet (top), and the triplet state (bottom). The triplet state shows 

spin-polarized regions (dark grey) that are absent in the singlet state. The EPLF 
domain for both plots is [-0.1:0.1J 
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Chapter 6 

Electronic Quantum Monte Carlo Calculations 
of Energies and Atomic Forces for Diatomic 

and Polyatomic Molecules 

Myung Won Lee1, Massimo Mella2, and Andrew M. Rappe1,* 

1The Makineni Theoretical Laboratories, Department of Chemistry, 
University of Pennsylvania, Philadelphia, PA 19104-6323 

2School of Chemistry, Cardiff University, P.O. Box 912, 
Cardiff CF10 3TB, United Kingdom 

We calculated the energies and atomic forces of first-row 
monohydrides, carbon monoxide, and small organic 
polyatomic molecules using quantum Monte Carlo (QMC) 
method. Accurate forces were obtained with the method of 
Casalegno, Mella, and Rappe, combining the Hellmann-
Feynman theorem forces calculated by the Assaraf-Caffarel 
method with a many-body Pulay correction. Improved 
algorithms for the minimization of the variational integral were 
useful in the force calculations. 

© 2007 American Chemical Society 69 
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Introduction 

While quantum Monte Carlo (QMC) has become quite successful in 
computing ground-state total energies, the calculation of properties other than 
energies has been less favorable. The accurate Q M C calculation of atomic 
forces has been enabled through the recent developments by Assaraf and 
Caffarel (7,2), Filippi and Umrigar (3), Casalegno et el. (4), Chiesa et al. (J), 
and others. 

The atomic force calculation can be extended to more complex systems (d), 
and we applied this method to all the first-row monohydrides, carbon monoxide, 
and small organic polyatomic molecules such as the methylene radical, the 
methyl radical, methane, and benzene. The first and second derivatives of the 
variational energy were analytically computed, and used to perform Newton's 
method parameter updates (7). For more efficient calculation of energies and 
forces, improved methods for optimizing variational Monte Carlo (VMC) wave 
functions were used (6). In general, the direct application of the variational 
principle yields significantly lower energies than variance minimization methods, 
so minimizing the energy is advantageous. The wave functions optimized in 
V M C were used as a guiding function in diffusion Monte Carlo (DMC) to 
compute more accurate energies. 

Dissociation energies could be obtained from the total energy calculations of 
diatomic and polyatomic molecules. The computed results agree well with 
experiment. The dissociation energies from our V M C calculations give better 
results than the values obtained through the variance minimization technique 
reported in Ref. (8). 

Theoretical Background 

The trial wave function we used is the product of Slater determinants of up-
spin and down-spin electrons and a correlation factor containing the variational 
parameters (cka), 

ψ τ = D t û 4 r exp 
Wffic #elec #elec N a 

Σ Σ Σ Σ μ ia 
TTnka 

Ja + 7mkaF 
ja ι 

j>i k 

nka \jT°kc 

where r =br / ( l + br) with b = 1 inverse bohr and mkce9 nka9 and oka are taken 
to be integers. 
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Newton's method was used to optimize the parameters in the V M C trial 
wave function. To improve the stability of the algorithm, we used the singular 
value decomposition (SVD). In addition, we used the steepest descent method in 
the initial stage of calculation and for the directions discarded in the S V D 
method for some calculations as described in Ref. (6). 

Atomic forces can be calculated by taking the first derivative of energy with 
respect to the nuclear coordinates, 

d (ψΊ\Η\ψΊ) 
d R

q a (Ψτ\ψτ) 

where q represents x, y, or ζ coordinate, a indexes the nuclei, and Rqa is a 
nuclear coordinate. For energy minimized trial wave functions, it can be shown 

that the force is given by (FQA } = (F™ ) + (F£« ^ as described in Ref. (4). 

For V M C , ^ / ^ F T ) can be calculated efficiently by using the following 

expression proposed by Assaraf and Caffarel (/), 

where Qqa = - Z a ^ ^ | œ ( r 9 i - ^ a ) / | r , - R a | and this term differs for each 

force component. A similar expression can be used in the D M C case (/). 
The Pulay correction term for V M C is given by 

\ q a I { ψ τ \ ψ Τ ) L / ( V T K ) 

and a similar equation can be used for D M C (4). 

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

G
U

E
L

PH
 L

IB
R

A
R

Y
 o

n 
Ju

ly
 4

, 2
01

2 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e:

 D
ec

em
be

r 
31

, 2
00

6 
| d

oi
: 1

0.
10

21
/b

k-
20

07
-0

95
3.

ch
00

6

In Advances in Quantum Monte Carlo; Anderson, J., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2006. 



72 

Results and Discussion 

We calculated the energies and forces of first-row monohydrides and carbon 
monoxide at five different bond distances around the experimental bond length 
(0.90, 0.95,1.00, 1.05, and 1.10 r e x p ) . We fitted the result to the Morse potential 
to take the anharmonicity into consideration. 

Since the number of data points is small, we used the energy and force 
results simultaneously in the fitting to the Morse potential to get better results. 
With this fitting, various properties of diatomic molecules, such as equilibrium 
bond lengths, harmonic vibrational frequencies, and anharmonicity constants 
could be obtained (6). 

Dissociation energies could also be calculated for these diatomic molecules 
by taking the differences between the energies of molecules and the energies of 
atoms. The dissociation energies and error bars obtained from our V M C and 
D M C calculations are summarized in Table I, together with the dissociation 
energies of our Hartree-Fock calculations. The V M C and D M C results and 
experimental values from Ref. (8) are also shown. Our V M C dissociation 
energies are closer to the experimental values than those given by Luchow and 
Anderson (5), while our D M C results are similar to theirs. We think that better 

Table I. Dissociation energies of diatomic molecules in kcal/mol 

H-F VMC DMC VMC" D M C Exp" 
LiH 34.2 54.7(1) 57.8(1) 45.7 57.8 58.0 

BeH 50.3 57.9(2) 55.7(2) 49.4 52.1 49.8 

BH 64.2 82.7(2) 84.7(3) 63 84.8 84.1 

CH 56.9 81.1(3) 83.5(3) 81 83.9 83.9 

NH 48.1 80.2(4) 82.3(4) 77 81.4 80.5-84.7 

OH 68.6 105.1(5) 106.4(5) 86 106.4 106.6 

HF 98.8 140.4(6) 141.4(6) 130 141.3 141.5 

CO 177.6 218.1(6) 254.9(7) - - 258.7 
a from Ref. (8) 
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V M C results in our calculation can be attributed to the energy minimization 
method, as compared to the variance minimization method used in Ref. (8). 

The following compares the force components for the L i H molecule at the 
bond distance of 0.9 r e x p . First, the force on the hydrogen atom is displayed in 
Figure 1 (a) and (b). As can be seen in the figure, the Assaraf-Caffarel method 
reduces the noise considerably, enabling the efficient calculation of the 
Hellmann-Feynman theorem force. In the case of the force on the hydrogen 
atom, the Pulay correction was close to zero, so that the total force was quite 
similar to the Assaraf-Caffarel force, as can be seen in Figure 1 (b). 

We also calculated the force on the lithium atom, which should be the 
negative of the force on the hydrogen atom, as L i H is a diatomic molecule, and it 
is shown in Figure 2 (a) and (b). The black horizontal line in the figure denotes 
the negative of the force on the hydrogen atom. 

In the case of the force on the lithium atom, however, although the Assaraf-
Caffarel method reduces the noise in the Hellmann-Feynman theorem force 
calculation, the Assaraf-Caffarel force does not agree with the negative of the 
force on the hydrogen atom. The total force on the lithium atom obtained by 
adding the Assaraf-Caffarel force and the Pulay correction agrees well with the 
negative of the force on the hydrogen atom, as can be clearly seen in Figure 2 
(b). 

For other hydrides, we calculated the atomic force only on the hydrogen 
atom. For all cases, the Pulay correction was very small. For carbon monoxide, 
however, the magnitude of the Pulay correction was larger than that of the 
Assaraf-Caffarel force, and was important in obtaining correct atomic forces. As 
can be seen in Figure 3, the total force on the carbon atom is similar to the total 
force on the oxygen atom in magnitude, and their directions are opposite, while 
for the Assaraf-Caffarel force, their magnitudes for the carbon atom and the 
oxygen atom are quite different. It seems that the Pulay correction is 
indispensable in the calculation of forces on nonhydrogen atoms. 

We performed V M C and D M C calculation of energies for the methylene 
radical, the methyl radical, and the methane molecule at their experimental 
geometries and then obtained the dissociation energies. The result is 
summarized in Table II together with the Hartree-Fock result. The Hartree-Fock 
method shows poor results, as is the case for the dissociation energies of 
diatomic molecules, while the Q M C method considerably corrects errors in the 
Hartree-Fock calculation, making it promising as an accurate method for the 
calculation of reaction energies. It can be noted that the Q M C method is good in 
predicting the bond dissociation energies irrespective of the spin states of the 
reactant and product molecules. 
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Table II. Dissociation energies of some polyatomic molecules in kcal/mol 

Process H-F V M C D M C Exp 

C H 4 ( g ) - > C H 3 ( g ) + H(g) 88 109 112 104 

C H 3 ( g ) - > C H 2 ( g ) + H(g) 99 122 125 108 

C H 2 ( g ) - > C H ( g ) + H(g) 86 101 103 102 

For the singlet methylene radical (CH 2), we calculated the force on each 
atom at various geometries. The calculated forces were in the direction to 
restore the experimental geometry, as is the case for the L i H molecule above. 
The force on each atom is depicted in Figure 4 using an arrow on each atom, 
whose direction is the same as the direction of the force and the magnitude 
proportional to the magnitude of the force. At the experimental geometry, each 
force component was close to zero as expected. For other geometries where the 
bond lengths or bond angles are changed, the forces we obtained were generally 
as expected. While the forces on hydrogen atoms look correct in all cases, the 
force on the carbon atom deviated from the expected direction in some cases. 
We could calculate the forces on the hydrogen atoms quite accurately, but longer 
simulation time may be necessary to get more accurate forces on larger atoms. 

The preliminary result of our benzene Q M C energy calculation at the 
experimental geometry is shown in Figure 5. The first data point at about -230.8 
hartrees is the reproduction of the Hartree-Fock energy. Initially, the steepest 
descent method was applied (iterations 2-17). We used 4 parameters for 
iterations 2-6, 40 parameters for iterations 7-10, and 64 parameters for iterations 
11-17. Even after these steepest descent steps, the noise in the Hessian was so 
large that it was difficult to apply Newton's method when we used the equation 
for the Hessian calculation in our previous work (7). So we used the Hessian in 
the symmetrized covariance form as proposed by Umrigar and Filippi (P), 

This scheme reduced the noise considerably and we could apply Newton's 
method as used for diatomic molecules. After the V M C calculation, we 
performed a D M C calculation (iterations 23-26), which reduced the energy even 
more. The final calculated energy for benzene is -232.17 hartrees, which may be 
compared with the experimentally derived value of -232.26 hartrees. 
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Figure 4. Force calculation of CH2 radical at various geometries 
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Figure 5. Energy of benzene in the course of QMC calculation 
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79 

The force calculation method combining energy minimization, a 
renormalized Hellmann-Feynman estimator, and a Pulay correction worked well 
with all the first-row hydride molecules, carbon monoxide, and some polyatomic 
molecules with very little extra effort. 

The energy minimization method in V M C is useful, but it requires an 
effective optimization scheme. The addition of steepest descents to the initial 
steps and to the subspace neglected by Newton's method with SVD seems to be 
advantageous for the molecular systems we investigated. For larger systems, the 
use of the covariance form in the Hessian calculation seems indispensable due to 
the large noise. 

We could calculate accurate harmonic vibrational frequencies and 
anharmonicity constants of diatomic molecules by fitting Q M C results to the 
Morse potential, achieving good agreement between Q M C calculations and 
experiment for these vibrational parameters. 
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Chapter 7 

The Fixed Hypernode Method for the Solution 
of the Many Body Schroedinger Equation 

F. Pederiva1, M. H. Kalos2, F. Reboredo2. D. Bressanini3, D. Guclu4, 
L. Colletti1, and C. J. Umrigar4 

1Dipartimento di Fisica, Universita di Trento, Povo, Trento, Italy 
2Lawrence Livermore National Laboratory, Livermore, CA 94550 

3Dipartimento di Scienze Chimiche e Ambientali, Universitá dell'Insubria, 
Como, Italy 

4Cornell Theory Center, Cornell University, Ithaca, NY 14853 

We propose a new scheme for an approximate solution of the 
Schroedinger equation for a many-body interacting system, 
based on the use of pairs of walkers. Trial wavefunctions for 
these pairs are combinations of standard symmetric and 
antisymmetric wavefunctions. The method consists in applying 
a fixed-node restriction in the enlarged space, and computing 
the energy of the antisymmetric state from the knowledge of 
the exact ground state energy for the symmetric state. We 
made two conjectures: first, that this fixed-hypernode energy is 
an upper bound to the true fermion energy; second, that this 
bound is lower than the usual fixed-node energy using the 
same antisymmetric trial function. The first conjecture is true, 
and is proved in this paper. The second is not, and numerical 
and analytical counterexamples are given. The question of 
whether the fixed-hypernode energy can be better than the 
usual bound remains open. 

© 2007 American Chemical Society 81 
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Introduction 

Monte Carlo methods can be used to compute characteristics of many 
natural processes such as thermodynamic and transport properties of materials 
and, in particular, diffusion problems. This method is a fundamental tool for 
studying the many-body problem in quantum mechanics, in particular, the 
ground state energy of a many-body interacting system. The Schroedinger 
equation in real time is transformed into a diffusion equation in imaginary time, 
where the kinetic energy plays the role of a diffusion term and the potential is a 
source or sink of particles. Indeed, for positive imaginary times, the operator 
expf-Ητ) acting on any state with no null projection c into the ground state \g> 
converges asymptotically to cexp(E0T) \g>.1 This provides a simple recipe to 
obtain the ground state energy of a many-body quantum system with a diffusion 
algorithm. However, there is an important limitation: since the ground state of a 
many-body system is a symmetric (bosonic) wavefunction, the evaluation of the 
energy of fermionic systems cannot be obtained only using this technique. 
Additional constraints must be added to force the wavefunctions to remain 
antisymmetric in the diffusion process2. In practice, the requirement of 
antisymmetry imposes boundary conditions upon the wavefunction. In this 
chapter we will describe a possible alternative to the standard fixed node 
approach based on the use of an extended space which is the product of the 
configuration space of the system under consideration by itself, in which a 
diffusion equation for pairs of points in the configuration space is implemented. 
Additional constraints are added in order to guarantee antisymmetry in the 
extended space. Such constraints in principle do not correspond to imposing a 
fixed-node constraint in the configuration space. In the next section we will 
review the fixed-node approximation. In the third section hypernodal functions 
in the product space will be introduced. The fourth section is devoted to the 
proof of upper bound properties for a restricted algorithm using hypernodal 
functions. The fifth section will present some results and some of the open 
questions related to this formalism. 

Fixed node approximation 

One of the earliest and still common approaches to impose antisymmetry is 
the so called fixed-node (FN) approximation2. In the standard F N - D M C , a trial 
wavefunction ψ(τ) is used to impose a fixed-node boundary condition (where r 
denotes the 3N coordinates of the electrons). The trial wavefunction must satisfy 
some conditions described below3. The walkers that generate the diffusion 
process are constrained to remain in a volume inside the nodes of ^(r). Thus, 
the nodes act as a boundary having an infinite repulsive potential. Any point r 
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inside a volume defined by the nodes, has images generated by symmetry 
operations on other volumes Snr (where Sn are all possible permutations of 
electronic coordinates). Ideally the nodes of ψ{?) must define volumes that 
expand the complete 3N space Ω by applying all the symmetry operations of the 
group; that is, all the permutations of coordinates. This imposes some restrictions 
on the nature of the trial wavefunctions that can be used (i.e. for the ground state, 
they cannot have more nodes than required by symmetry.) Various techniques 
are used to contract these trial wavefunctions, typically including Slater 
determinants of appropriate basis functions and two-body correlations by way of 
Jastrow products. D M C in the fixed-node approximation yields the ground state 
wavefunction ψ^τ) inside a volume defined by the nodes of ^(r) Since ψη^τ) 
is obtained by projecting out the high-energy components of the original trial 
wavefunction compatible with its nodes, the corresponding expectation value of 
Η must be less than or equal to that of the original trial wavefunction. 

A n antisymmetric wavefunction that expands the full volume Ω can be 
obtained from y ^ 1 " ) with the operation: 

VFN(Snr) = ZzF(S„)y/m(r). (l) 
η 

The function ψ*π^τ) is, by construction, an antisymmetric wave function 
because χ ρ(5„) are the characters of the permutations operations in the 
antisymmetric representations of the symmetric group, i.e., the χ ρ (Sn)=\ for 
even permutations and χ ρ (S„)=\ for odd permutations. Therefore, the fixed-
node approximation limits the search of the fermionic ground state to the 
subspace of linear combinations of antisymmetric wavefunctions that share the 
nodes of a trial wavefunction ^(r). Since the ground state of the true fermion 
problem ψ0 (r) could have in principle different nodes than ^(r), we only obtain 
an upper bound of the fermionic ground state energy. The difference between 
this upper estimate and the true ground state energy is the nodal error of the 
fixed-node approximation. 

Hypernodal functions 

Various attempts have been explored to overcome the limitations imposed 
by the fixed-node approximation. Here we propose an algorithm which in 
principle should be able to go beyond the highly successful but nevertheless still 
limited fixed-node diffusion Monte Carlo. 

We propose an alternative construction of the nodes in an expanded space 
that doubles the dimensions of the usual FN-DMC, and we impose fixed-node 
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boundary conditions in this 6N-dimensional space. Instead of the usual fixed-
node approximation we propose determining the nodes using functions of the 
form: 

(2) 
Ψ m (R) = Ψ A ( r i )Vs ( r 2 ) - Ψ s ( r i )ΨΑ ( r 2 ) 

where R=(ri,r 2), and the indexes 1 and 2 denote that the wavefunctions act on 
different subspaces with 3N coordinates each. It is straightforward to see that, i f 
ε Α and e s are the ground state energies of the fermionic and bosonic problem 
respectively, then 

Ηψ% (R) = ( f f , + H2 )ψϊΝ = (εΑ + Β s Κ* (3) 

where Hi and H2 are identical except that H1 acts on the set (1) of 3N coordinates 
and H2 on the set (2). It remains to be shown that the ground state solution within 
the nodes of functions of the form ψ1)

ΗΝ and ψ€

ΗΝ have higher energy than ε Α +ε δ . 
That implies that the the energy of the lowest energy state of a domain inside the 
nodes of y/b

HN or ψ€

ΗΝ is necessarily also the energy of a function with the 
structure of y/b

HN or ψ€

ΗΝ. 
A key step in the standard fixed-node approximation is the selection of an 

antisymmetric trial wavefunction, that is, an irreducible representation of 
dimension 1 of the group of all permutations of electronic coordinates4. The 
irreducible representations of dimension 1 are eigenvectors of every operator Sn 

with eigenvalues χ υ(5„) denoted as characters. In general, for any // , i f ψ Υ ( Γ ) 
belongs to an irreducible representation ν of Η of dimension 1 of some group of 
symmetry operations S„, the nodes of i|/u(r) transform as H. That is Sn H=H and i f 
^(r) =0, then 

ViSjr) = z"{Smyr(r) = 0 (4) 

for every Sn. The χυ(5„) are denoted as characters of the operator S„ on the 
representation v. Thus all volumes enclosed by the nodes of an irreducible 
representation of dimension 1 \|/v(r) are equivalent by symmetry operations. 

Accordingly, and provided that there are no additional accidental nodes, the 
full volume Ω can be expanded using Eq. (1). On the contrary, i f ψ(τ) is a 
mixture of two or more representations i) the nodes and the volumes enclosed 
are no longer equivalent by symmetry, ii) there is no way to obtain by symmetry 
operations the value of the ground state wavefunction outside a given volume; 
iii) since the volume are not equivalent, fixed nodes on different volumes give 
different energies. 
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In summary, in order to obtain an upper bound estimation of a ground state, 
it is key that the ground state belong to an irreducible representation of 
dimension 1 of the symmetry group of H=H\+H2. Using a trial wavefunction of 
the same irreducible representation will give an upper limit for the energy. Thus 
in order to prove the upper bound it is necessary and sufficient to demonstrate 
that functions of the form ψά

ΗΝ or ψ€

ΗΝ are irreducible representations of 
dimension 1 of some symmetry group that expands the volume Ω®Ω. Therefore, 
in the following section we will i) find the symmetry group ii) demonstrate that 
Ψ1>ΗΝ or ψ€

ΗΝ are irreducible representations with dimension 1 of the a group and 
iii) extend the ground state fixed-hypernode wavefunction in all of the higher-
dimensional space ΩΘΩ. 

The extended Hamiltonian symmetries and some 
representations 

In order to prove that ψι>

ΗΝ and ψ€

ΗΝ are irreducible representations of 
some group, we need to recall some properties of the symmetric group (the 
group of all possible permutations). Every permutation in the symmetric group 
commutes with the many-body Hamiltonian of identical particles. In quantum 
mechanics, irreducible representations are associated with quantum numbers or 
conserved quantities such as parity, angular momentum, etc. Good quantum 
numbers appear every time there is an operator that commutes with the 
Hamiltonian. There are two trivial 1-dimensional representations of the 
symmetric group. These representations are the identity (symmetric), with 
character 1 for every member of the group, and the antisymmetric representation, 
with character 1 for even and -1 for odd permutations. Depending on the order of 
the group (which is the number of permutations N!) there may be many other 
representations. 

In the case of the antisymmetric wavefunctions the quantity conserved can 
be related to the operator 

that has eigenvalue 1 for every antisymmetric wavefunction and zero otherwise. 
It is possible to define analogously a bosonic operator Çf which consists of the 
sum of all permutations with eigenvalue 1. The operators (f and can be 
rewritten as: 

(5) 
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QF = [ 1 - ^ ] [ Σ £ ] = [ Σ £ ] [ 1 - ^ ] ( 6) 

ρ β = [ 1 + 5 ( / ][Σ£] = [Σ£][1 + 5 ί / ] , 

where Sy is any single pair exchange and [ΣΕ] the sum over all even 
permutations. 

Suppose that S ^ l ) is any permutation of two coordinates ij on the space (1) 
and S/m(2)is another permutation acting on space (2). Since these two operators 
commute, the character table of the group generated by the product can be 
factored out as a product of the character tables of the subgroups. Moreover, the 
irreducible representations of the product group are products of the irreducible 
representations of the factors. Thus, since we know two irreducible 
representations of the symmetric group we can trivially guess four irreducible 
representations of the product group. They are given by: 

^ W = ̂ ( ri)^(r 2) 
ψ%{Κ)^ψ€

ΗΝ{Κ) = M r i ) M r

2 ) 

= ! Μ Γ Ι ) Μ Γ 2 ) 

2 

2 

There is a symmetry operation of the Hamiltonian that we have not considered so 
far: the exchange of all coordinates in the subsets (1) and (2) denoted by the 
operator P. Applying Ρ to the irreducible representations of the product of 
permutations in Eq. (7) one immediately finds that Ρ mixes the second and third 
representation of the subgroup of all permutations in Eq.(7). Therefore, functions 
of the form ψ1)

ΗΝ and ψ€

ΗΝ generate an irreducible representation of dimension 2 
of the group all symmetry operations of // , and it is possible to define the 
operator T, 

T(b,c) = QF(\) Q\2) + Q\\) QF{2) ( 8 ) 

which is the associated projector into that subspace [see Eq.(6)]. This case is 
analogous to the group of continuous rotations in spherical symmetry. The 
representations have dimensions larger than one for angular momentum / > 0. 
Because ψΪ>

ΗΝ and yfHN belong to the same representation they give rise to 
degenerate states. Eigenfunctions within a representation with dimension larger 
than 1 can be classified according to a symmetry operation in the group. The 
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exchange operator Ρ can be used to assign an additional quantum number to 
them with eigenvectors of the form y/b

HN and ψ€

ΗΝ. The associated projectors 
are: 

mJl±D.T{b,c) 
(9) 

nc)={-^P-T(b,C) 

Physically, one can also remove these degeneracies by breaking the 
symmetries of the Hamiltonian. We will follow this path to find a group that has 
\j/b

HN and ψα

ΗΝ as distinct irreducible representations. For that we consider only 
the permutations that commute with P, that is, only permutations of the form 
S„(1).SW(2). 

The group of all S„(\)S„(2) is an isomorphism of the symmetric group of the 
Sn acting in a single space. Thus they have the same character tables. Multiplying 
every Sn(l).Sn(2) by Ε or Ρ defines a larger group of order 2NI. Taking 
advantage of the knowledge of two irreducible representations of the symmetric 
group one can generate the projectors of four representations of the product 
group. Since, as in the previous case the projectors are the product of the 
subgroups projectors: 

T(a) = (P+E)Q(+) 

T(b) = (P + E)Q(-) 

T(c) = (P-E)Q(-) (10) 

T(d) = (P-E)Q(+) 

with 

£(1,2)(±) = £ * f l , F ( S J S „ ( l ) . S n ( 2 ) = ( 1 1 } 

= [115, (1)5, (2)] [Σ£ (1).Σ£(2)] / Art 

= [Σ£ (1).Σ£(2)] [1 ± Su (1)5, (2)] / Art 

where Si/jr) is any single pair permutation acting on the set of coordinates σ, 
[ΣΕ(\).Ε(2)] is the sum over all the products of even permutations, and N! is the 
total number of permutations. By construction Q{±) are projectors on the 
symmetric and the antisymmetric representation of the group generated by 
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S„(1).S„(2). Since the even permutations are a subgroup of the symmetric group 
one has that [ΣΕ(1).£(2)][Σ£(1).£(2)]=[Σ£(1).£(2)] Nl/2 and one can therefore 
show that 0(1,2) 0(1,2) = Q(l,2). 

It is easy to see that 

T(b,E)y/"HN = VHN 

Τψ,Ε)ψ'ΗΝ = 0 

T(c,E)i//c

m = ΨΗΝ 

T(c,E)y/b

HN = 0 

(12) 

Also any symmetry operation outside this reduced group such as S„(l).Sm(2) 
- S^l).S^2).Sn(2).Sm(2) = S„(l).S/2)M2) may be applied to ψ"ΗΝ: 

5 „ ( 1 ) . 5 „ ( 2 ) Λ ( 2 ) ^ = ψ"ΗΝ Sn,Sk even 

S „ ( l ) . S „ ( 2 ) . S T ( 2 ) < „ = -ψ"ΗΝ S„ odd,Sk even ( 1 3 ) 

S „ ( l ) ^ ( 2 ) ^ ( 2 ) ^ = ψ'ΗΝ S„ even„SA odd 

S „ ( 1 ) . S „ ( 2 ) . S , ( 2 V * „ = -ψ<ΗΝ S„,Sk odd 

Similar rules are found for ψ€

ΗΝ. Therefore, only if Sk(2) is odd are the 
representations ψ1)

ΗΝ and y/c

HN mixed. In other words, we only need to remove 
the symmetries Sn(\).Sn(2).Sk(2) when Sk(2) is odd to split ι/ΗΝ and ψα

ΗΝ. Since 
we know that y/b

HN is an eigenvector of all S„(\).Sn(2).Sk(2), and of Ρ for S*(2) 
even, and that the eigenvalues are the same for different even 5^(2), we can write 
the associated projector that includes these symmetries as 

j - Znb/c,E)Sk(2) = T(b/c)^-VE(2)] ( 1 4 ) 

With a little work it can be shown now that the projectors T(b) and T(c) 
defined in Eq. (9) and (14) are indeed identical. Therefore, T(b) and T(c) project 
into a representation of dimension 1 of a group, namely the one formed by all Ρ 
and all Sn(\).Sn(2).Sk(2) with Sk(2) even. Thus ψά

ΗΝ and ψ€

ΗΝ are irreducible 
representations of dimension 1 of a subgroup of symmetries of Η and the 
volume enclosed by their nodes can be extended to the complete space by 
application of the operations of the subgroup. That is what we wanted to prove. 
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In other words, just as the permutations are enough to construct an antisymmetric 
function over the full space, so, in our larger space, the permutations plus 
interchange of the two sets of coordinates serves the same purpose. 

Results 

The fixed-hypernode algorithm is a straightforward extension of the 
standard fixed-node procedure. Instead of working with a single walker, we use 
pairs of walkers, each one defined in the subspaces 1 and 2 respectively. Each 
walker is drifted/diffused according to the usual prescription using as importance 
function either y/b

HN or ψ£

ΗΝ. Moves are rejected whenever the importance 
function changes sign, and the energy is projected out of the importance 
function. The outcome is an upper bound for the sum of the energies of the 
symmetric and antisymmetric ground states. Additionally, one needs to compute 
the energy of the symmetric state by means of standard Diffusion Monte Carlo. 
The difference between this quantity and the F H N eigenvalue will give an upper 
bound for the ground state of the fermionic state. 

The important issue is to assess the quality of this upper bound with respect 
to the standard F N value. In fact, it can be easily seen that walkers subject to the 
F H N constraint are not in principle constrained within a nodal pocket in the 
configuration space, and more space can be explored. 

However, this fact in itself is not enough to guarantee that the F H N upper 
bound is better (or worse) than the FN bound. 

Numerical experiments were performed on two different systems. The first 
was a N=6 electrons quantum dot, defined by the Hamiltonian5 

N ( h2 1 λ Ρ2 1 
H = t - V 2 + - m e m * ^ V + - Y — — (15) 

tt{ 2mem* 2 ) ε 

where m =0.067 and ε=12.4 are the effective mass and effective dielectric 
constant which approximate electrons in GaAs, and o=3.32meV is the 
confinement constant of the dot. For this system the F N energy in effective 
atomic units (effective Hartrees) is 7.6001(1). The F H N eigenvalue is 14.752(5), 
and the energy for the equivalent symmetric system is 7.1086(1), giving as an 
estimate for the antisymmetric ground state 7.643(3), which is higher than the 
fixed node estimate. 

More tests of this procedure have been performed on the Be atom, using 
different importance functions with different degrees of optimization6. The 
results are summarized in Table I. The wavefunctions labelled as A , Β and C in 
the table are obtained using in the construction of the hypernodal function, 
antisymmetric functions which are respectively a one-determinant trial 
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Table I. Fixed-hypernode results for the Be atom 

Wavefimction DMC VMC 

Boson -19.26439(1) -19.27439(1) 

A F N -14.6578(3) -14.615(2) 

A F H N -33.9323(3) -33.890(2) 

A FHN-Boson -14.6579(3) -14.616(2) 

Β F N -14.6571(3) -14.6400(2) 

Β F H N -33.9313(3) -33.9144(2) 

Β FHN-Boson -14.6570(3) -14.6401(4) 

C F N -14.66721(1) -14.6665(4) 

C FHN -33.94512(20 -33.94158(2) 

C FHN-Boson -14.66719(3) -14.6665(2) 

Exact7 -14.66736 

wavefimction with incorrect cusp and non-optimized parameters (A), a one-
determinant wavefimction with correct cusp and optimized parameters (B), and a 
four-determinant wavefimction with correct cusp and optimized parameters (C). 

As it can be seen from the table, the results are in contrast with the 
conjecture that the F H N upper bound is lower than the standard F N one. In 
particular, it can be noticed that the F H N estimates for the Fermion eigenvalue 
(i) do strongly depend on the choice of the antisymmetric function used to build 
the hypernodal function and (ii) are essentially the same as the F N estimates for 
that particular antisymmetric function. This result would suggest that although 
the nodal properties of the hypernodal functions are not directly related to the 
nodes of the antisymmetric function used, some of this information is passed into 
the doubled space. This point is not completely clarified at present. 

It is however possible to show that in general using a good antisymmetric 
trial function for building an hypernodal function does not lead in principle to 
better eigenvalues. In fact, let us assume that we know an approximate 
antisymmetric trial whose nodes are exact. For instance, let us consider the 
problem of a particle in a two dimensional square box of side 1, seeking an 
estimate of the eigenvalue for the first spatial antisymmetric solution. Let <ps be 
an approximation of COS(7DC/2). We can build four approximations of the exact 
degenerate antisymmetric eigenstates, each one with an exact node: 
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Ψ3 = Ψ s Ο ) s i n O ) - φ5 (χ) s i n ( ^ ) ( 16) 

ψ A = <ps (y) sin(^)+<ps (*) sin(^) 

Obviously, i f we used F N - D M C for computing the expectation value of the 
Hamiltonian using any of these functions, we would obtain the exact eigenvalue. 
On the other hand, i f we build an hypernodal function starting from a symmetric 
function Ws= φ^χ) φ^>): 

^HN = (X\ » y\ (X2>yi)~X¥s (X2 ' y 2 (X\ ' y I ) ( Π ) 

it is easy to see that the hypernodes are given from the following expression: 

sinfrgy, ) sinQpc, ) s in(^y 2 ) | sin(nx2 ) = Q 

<ps(y\) <Ps(x\) <ps(yi) <Ps(xi) 

which in general has hypernodes which (i) depend on the choice of φΞ and (ii) 
do not coincide with the exact hypernode. Therefore, the estimate of the energy 
for the antisymmetric state will be worse than the corresponding fixed-node 
estimate. So, in general, it is possible to build hypernodal function with a wrong 
hypernodal surface starting from functions with the correct nodal surface. 

However, in a general case neither the exact nodal structure nor the exact 
hypernodal structure are known, so it is difficult to assess the relative quality of 
the two estimates. 

In general, a possible strategy for better exploiting the hypernodal functions 
would be that of optimizing the hypernodal structure (following a variational 
procedure analogous to that used for standard functions), rather than relying on 
the optimization of the antisymmetric functions. Some aspects though, like the 
correspondence between the FN and F H N results in the case of the Be atom, 
warrant additional study. 
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Chapter 8 

Recent Progress in Fermion Monte Carlo 

M. H. Kalos 1 and F. Pederiva2 

1Lawrence Livermore National Laboratory, Livermore, CA 94550 
2Dipartimento di Fisica, Università di Trento, Povo, Trento, Italy 

Our approach to the solution of the Schrödinger Equation for 
many-fermion systems has been extensively revised. We have 
devised a generalization of "acceptance/rejection" that applies 
to signed random walkers. We have introduced a new class of 
importance functions for two walkers that better reflects the 
structure of the enlarged Euclidean space of the pair. For 
greater flexibility, we no longer rely on the "local energy" of 
the importance function to determine the dynamics of the walk. 
We sketch these technical changes and give new results for the 
two-dimensional electron gas. 

Introduction 

This paper is a progress report on our research in Fermion Monte Carlo, 
which is aimed at developing a method for solving many-fermion problems that 
is efficient in the spirit of Monte Carlo methods, that is polynomial in particle 
number, and that uses no uncontrolled approximations. 

The phrase "no uncontrolled approximations" is often used in a somewhat 
ambiguous way. We propose the following criteria: 

© 2007 American Chemical Society 93 
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1. Any calculation should produce an error estimate. In a Monte 
Carlo calculation, the statistical error is not sufficient: what is 
required is an internal estimate of the difference between the 
expected value and the correct answer to the physical or 
mathematical model being solved. 

2. The results should agree with known exact results or with reliable 
experimental data i f available. 

3. The computer time required to reduce the total error by some 
fraction should be a polynomial of low degree in the ratio of errors. 

The criteria deserve further discussion. Criterion 2 can hardly be 
controversial; perhaps a reminder is needed that experimental results can be 
wrong or wrongly interpreted. 

The desirability of criterion 3 is clear, but often ignored: many 
computations can be carried through to an apparently satisfactory level of 
agreement with other results, but can only be further improved at great cost, 
either because of an approximation essential to the computation, a combinatorial 
explosion in an expansion or a set of basis functions, or because of the inherent 
computational complexity of the method. Nevertheless, we restrict the term "no 
uncontrolled approximations" to methods that satisfy it. 

Criterion 3 is clearly the most stringent. Many numerical calculations—and 
purely theoretical work as well—require physical, mathematical, or numerical 
approximations to be feasible. We do not assert that such calculations are 
invalid. Indeed, in the work described below and elsewhere we make two well-
known approximations—neglect of relativistic effects and fixing the nuclear 
positions. The effect of these can be accurately estimated. Our argument is that 
a numerical solution of the non-relativistic Schrôdinger equation for a many-
electron system that has no uncontrolled approximations would be a 
tremendously valuable asset to the theory of electronic structure. Since 
corresponding methods for the ground state of many-boson systems exist and 
have also proved valuable, it is natural to seek the analog for many-fermion 
systems. 

It is the notorious "fermion sign problem" that makes the extension 
difficult. Perhaps another digression is worth while. If one defines a "sign 
problem" in Monte Carlo as the degradation of statistical efficiency because of 
the presence of negative signs, then there are many "sign problems." Some are 
provably intractable; some are clearly trivial or can be transformed away. 
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The sign problem that arises in treating the Schrôdinger equation for many-
fermion systems is not trivial, but it is not known to be intractable. 

The standard way to treat such systems within the framework of Quantum 
Monte Carlo 1 is to impose the "fixed-node approximation,"2 namely to choose an 
antisymmetric trial function and to follow walkers that diffuse only in domains in 
which that function does not change sign. If one removes the fixed-node 
constraint, then the Monte Carlo estimates of the numerator and denominator of 
the energy quotient degenerate exponentially fast to zero with statistical errors 
that asymptotically dominate their mean values. This behavior reflects the fact 
that the distributions of the random walkers converge to that of the symmetric 
ground state in which the averages of antisymmetric test functions are zero. 

The difficulty is not simply technical; it reflects some deep challenges. 
These can be characterized in several ways that may be clues about how to cure 
them. 

One way of describing the problem is that the random walk that solves the 
Schrôdinger equation is "local." A l l decisions about the dynamics are based on 
the position of a walker. But the Pauli principle is global in character; it 
connects the properties of a physically acceptable solution at distinct points 
usually well separated in configuration space. Reconciling the random walk with 
antisymmetry seems to require some action at a distance. In effect, this is what 
the fixed-node restriction does, at the cost of an uncontrolled approximation. 

We introduce walkers with algebraic signs: a positive walker adds its 
contributions (which may have either sign) to numerator and denominator of the 
energy quotient. A negative walker subtracts its contributions. The use of such 
signed walkers does nothing in itself to avoid the asymptotic decay of signal to 
noise as described above. If these walkers diffuse independently then the 
distributions of both populations will approach that of the symmetric ground 
state. But there is now an opportunity to ameliorate that decay by changing the 
dynamics. Clearly, the two walkers must obey different dynamics; at the least 
they must follow different guiding functions. If not, then, in the long run the two 
populations will have the same distributions (corrected for the effect of 
importance sampling) namely that of the symmetric ground state. 

Another opportunity for improvement lies in the possibility of canceling 
walkers of opposite signs against each other, while leaving unchanged the 
projections with antisymmetric test functions. While this is straightforward in 
principle, it is effective only when the walkers are close to each other, and close 
pairs become exponentially rare in high-dimensional space— i.e. for large 
particle numbers. 

Correlating the dynamics of two random walkers makes it possible to cancel 
walkers efficiently even for many-body systems. 

Our research3 has been motivated by the expectation that this sign problem 
can be solved in an effective way, using these and perhaps other techniques. 
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Importance functions 

Let 9A(R) and cps(R) be approximate wave functions for the antisymmetric 
and symmetric ground states of our system. Now define 

* S W = a W ( R ) + M i * ) ± + So I^WI; 
o s (R) = ̂ (R)+sfS(R); O) 
Ψ ( Κ + , Κ - ) = Φ * ( Κ + ) Φ 5 ( Κ - ) + Φ 5 ( Κ - ) φ - ( Κ + ) . 

The parameters gk are adjusted to achieve stability and minimize the 
variance of the fermion energy. 

Note that Φ* 0 and Ψ have cusps at the nodes of <PA(R) · A n alternative to 
Φ*ο with no cusps is 

Φ * (R) = VpJw+aViW ± g**A (R) 

+ g 0V^(R) + g 2

2(V^(R)) 2 , 

where V (PA(R) measures the change of 9A(R) needed to smooth the cusp. 
The following properties hold for any an odd permutation P. 

φ £ ( Λ * ) = Φ * ( Κ ) (3) 

T ( i , R + , P R ' ) = T ( R - , R + ) 

Ψ ( / Ί Τ , / » Ι Τ ) * Ψ ( Κ Μ Τ ) . 

If Ro + , Ro* are such that 

then 

^(R 0

+ )>o 

^(Ro)<o 

T ( R 0

+ , R - ) > Ψ ^ 0

+ , R - ) > T ( P R 0

+ , PR'0 ), 

T ( R ; , R - ) > T ( R ; ,PR-)> V(PR+

0 ,PR~0). 

(5) 

(6) 
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These last inequalities state that i f both the positive and negative walkers 
are in their favorable "pockets," then the importance functions Ψ are decreased 
when odd permutations are applied to either or both sets of coordinates in either 
order. 

In practice, the function Ψ was modified further to reflect the fact that 
cancellation of close walkers means that the importance must vanish as they 
approach each other. Consideration of the diffusion process with cancellation 
suggests the following form: 

T c ( R + , R - ) = T(R + ,R- )e / / (^ F / (2^) |R + - R - |). (7) 

As indicated above, in the computations reported here, the drift and 
branching for the basic diffusion Monte Carlo was carried out using the 
symmetric trial function (ps(R). This takes care of cusps associated with the 
physical potentials—here Coulomb potentials. Then after a pair of walkers is 
advanced by means of drift, correlated diffusion, symmetric branching, 
cancellation, and " repairing," the new pairs are branched again on the basis of 
the ratio of x ¥ c before and after. 

It is useful to review here the technique involved in correlating the two 
walkers. The diffusion step for any walker requires generating a 3N-
dimensional vector U + whose components are drawn independently from a 
Gaussian distribution of mean zero and variance δτ, the increment in imaginary 
time. That is, a positive walker is moved from S + to R + by 

R + =S + +IT, (8) 

and a negative walker by 

R- = S + U , (9) 
where 

IT = U + -2 
S+-S" 

|S + -S~ 
- u + 

S + -S" 
(10) 
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Acceptance/Rejection Dynamics 

We review here a few basics of D M C dynamics and show how it can be 
generalized to take into account acceptance/rejection, correlated diffusion, and 
cancellation. We use the simple unsymmetric short-time propagator 

G / D C . M - exp[-(R-S-^V^(S))/^(S)) 2 /2^] 
0 (2πδτγΝ/1 (Π) 

and define 

Ps(S) (12) 
B(R) = e[E^w]ST; 
G(R,S;<?r) = B(R)G0(R,S,ÔT). 

Cancellation of walkers means that the algebraic density of walkers of 

opposite signs that is generated by means of G0 can be canceled i f they are close 

enough. When importance sampling is used, what is cancelled is the density 
unweighted by the importance function. So a pair of walkers (R k

+, Rk') 
generates an unweighted net density at R given by 

ψΡ(Κ,τ + δτ) = 

B(R)G0(R,R+

K;ÔT)) fl(R)G0(R,R;;<ft)) 

<pS(R) ç>S(R) 

Using "acceptance/rejection" means replacing the propagator G by 

GAR(R,S;ST) = A(R,S)B(R)G0(R,S;ST) 

+ />,(S)2>(S)*(R-S) 

(13) 

(14) 
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(16) 

where A (R ,S) is the probability that a move proposed from S to R is accepted, 
and pr is the total probability that moves from S are rejected. We separate 
positive and negative parts of the density by applying the identity 

x = max(x,0) - max(-x,0). (15) 

We find the following propagators for the positive and negative parts of the 
future density: 

GCAR ( R > Κ ; ST) = ^ ( R , R ; )B(R)G0 ( R , R ; ; δτ) 

^ ( R , R , + ) G 0 ( R , R ; ; ^ ) 

+ pr(R+

k)B(R+
k)ô(R-R+

k); 
G - , S ( R , R ; ; ^ ) = A(R,R-k)B(R)G0(R,R-k;Sr) 

x m a x ( l - ^ i ^ M î i ^ ) 5 0 ) 
A(R,R;)G0(R,R-K;ÔT) 

+ pr(R-k)B(R-k)ô(R-R-k). 

Results for the two-dimensional electron gas 

We have carried out a set of computations for the two-dimensional electron 
gas at r s = 1. The symmetric trial function, cps(R), was simply an electron-
electron Jastrow product, and the antisymmetric function, (PA(R), was (ps(R) 
times a Slater determinant of plane waves. Recall that in the present form of our 
methods, there can be linear dependence in time step and noticeable dependence 
on population size, so that a substantial computing effort is required. Results are 
summarized in Table 1 and compared with a calculation by Kwon, Ceperley, 
and Martin 4 (which included backflow in the determinant basis functions). 
F M C ( l ) refers to a set of calculations with importance functions with cusps; 
FMC(2) to a set without cusps. The fact that these agree with each other and 
with the reliable released node computation4 is a strong verification of the 
correctness of our method. 

In Table 2, we show the decline in the computational efficiency as electron 
number, increases from 10 to 26. The "figure of merit" is the product of the 
variance of a typical run by the aggregate computing time for that run. It is 
notable that this measure of efficiency decreases only by a factor of two as the 
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Table 1. Energy per particle for the two-dimensional electron gas at r s = 1 

N e 
F M C ( l ) FMC(2) D M C 

10 -0.4582(10) 
26 -0.3910(17) -0.3908(17) -0.3910(12)* 

* Released node4 

Table 2. Efficiency vs. electron number 

N e 
Computing time per step* Figure of merit* 

10 0.018 0.0077 
26 0.101 0.016 

* Arbitrary relative units 

electron number doubles. Preliminary results show a modest increase for 58 
electrons; we are in the process of revising our programs to treat larger electron 
systems even more efficiently. 
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Chapter 9 

Quantum Effects in Loosely Bound Complexes 

Meredith J. T. Jordan1, Deborah L. Crittenden1,2, 
and Keiran C. Thompson1 

1School of Chemistry, University of Sydney, Sydney, New South 
Wales 2006, Australia 

2Current address: Research School of Chemistry, Australian National 
University, Canberra, ACT 0200, Australia 

This chapter presents the incorporation of vibrational diffusion 
Monte Carlo (DMC) calculations into the Grow algorithm for 
interpolating and iteratively converging molecular potential 
energy surfaces (PES). These surfaces are then used as a basis 
for calculating the ground state properties of loosely bound 
complexes. D M C calculations are incorporated into Grow in 
two ways. Firstly, D M C walkers are used to sample the 
configuration space of the complex, providing new geometries 
to be added to the PES data set. The convergence of the PES 
with respect to the size of the data set is then monitored with a 
second D M C calculation which calculates the zero point 
energy of the complex and/or various bond length distribution 
functions of interest. The methodology is developed using of 
an analytic PES for the water dimer, a prototypical loosely 
bound complex. The method is then applied to gas-phase and 
monohydrated 1,2-ethanediol, where the nature of intra- and 
inter-molecular hydrogen bonding is investigated. Although no 
evidence is found for intramolecular hydrogen bonding in 1,2-
ethanediol, D M C calculations demonstrate the presence of 
intermolecular hydrogen bonds in the l,2-ethanediol.H20 
complex. A second application is the hydrated glycyl radical, 
glycyl.8H 20. A 280 point PES is generated and D M C 
calculations on this surface show that ground state glycyl.8H 20 
exists as a neutral molecule and not a zwitterion. 

© 2007 American Chemical Society 101 
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D M C calculations are also used to investigate the ground state 
structure of another hydrated amino acid, γ-aminobutyric acid 
(GABA) . A global PES for the G A B A . 5 H 2 0 complex is 
generated based on the 9 local minima on the surface. D M C 
calculations are then used to investigate the conformational 
flexibility of ground state G A B A . 5 H 2 0 . 

Introduction 

Loosely bound molecular complexes are common in chemistry and can 
occur as clusters, transition states and reactive intermediates. They are also 
central to many biological processes, in particular those involving weak 
interactions and inter- and intra-molecular proton transfer. Typically the 
molecular potential energy surface (PES) describing a loosely bound complex is 
characterised by multiple local minima. If the overall zero-point energy (ZPE) of 
the complex is comparable to or larger than the barriers between these local 
minima then the ground state molecular wavefunction may be delocalized over 
two or more minima. In this case the properties of the ground state may differ 
significantly from those of the lowest energy equilibrium configuration^ 1-3) 

The degree of nuclear derealization due to zero-point motion and tunnelling 
may be determined from the ground state nuclear wavefunction. This 
wavefunction also allows calculation of any observable ground state properties. 
The ground state nuclear wavefunction may be calculated from the molecular 
PES using either variational methods which use expansions of the wavefunction, 
or Monte Carlo techniques such as quantum Diffusion Monte Carlo (DMC).(4-7) 
D M C techniques, however, have better scaling properties with increasing 
dimension than the variational, grid-based, methods which scale exponentially. 
D M C techniques can therefore be used to characterize large, loosely bound 
complexes. 

D M C has been used previously to study many loosely bound molecular 
systems or complexes. For example, the intermolecular modes in water clusters, 
(H20) n, have been studied extensively,(8-16) and other systems studied include 
(HF)2,(17) (DF)3,(18) (HC1)2,(19) (CO)2,(20) Ar nHF,(21,22) N 2 :H 2 0(23) and 
CH 5

+ (24) These previous D M C studies have employed either functional forms 
for the molecular PES, for example (HF)2,(17) (H 20) n(8,9,l 1-16) and CH 5

+ (24) 
or the direct ab initio calculation of the value of the molecular potential energy at 
each configuration sampled by the D M C procedure (direct D M C ) , for example 
(H 2O) 2(10) and phenol:(H20)n.(25) Although using a functional form to 
represent the global PES is computationally inexpensive, the accuracy of the 
D M C calculation is limited by the parameterization of the surface. Furthermore 
the number of data points required for the multidimensional parametrization of a 
PES scales exponentially with dimension. Direct D M C is, in principle, the most 
accurate method. However, due to the high computational expense of accurate 
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ab initio calculations and the large number of energy evaluations required per 
D M C simulation, this method is currently limited by the quality of the ab initio 
calculation performed. Typically, direct D M C simulations are only feasible 
using density functional theory with, at most, a double-zeta quality basis.( 10,25) 

Interpolation is an alternative method for the generation of a PES. A 
number of interpolation schemes have been proposed(26-38) and here we use the 
modified Shepard interpolation scheme of Collins and coworkers.(31-38) This 
scheme provides a method for obtaining a representation of the global PES with 
higher accuracy than using a functional form and with lower computational cost 
than direct D M C . The molecular PES is expressed as an interpolation over data 
that is scattered throughout the chemically relevant regions of conformational 
space, thus reducing the scaling with dimension that makes functional form PESs 
prohibitive for large systems. Each data point in the interpolation comprises a set 
of atomic coordinates, the corresponding energy and the first and second 
derivatives of the energy with respect to nuclear displacement, as calculated 
using a density functional or ab initio level of theory. For relatively small 
systems these calculations can be performed at chemically accurate levels of 
theory.(39) The potential energy at any arbitrary configuration is then expressed 
as a weighted sum of Taylor series expansions from neighbouring data points. 
The interpolation procedure is an iterative process in which the relevant 
configuration space is explored dynamically, providing a set of molecular 
configurations describing the chemically relevant regions of configuration space. 
Some of these molecular configurations are then chosen as new data points to 
create a new, expanded, data set. This procedure is repeated until the PES is 
converges for a given observable, that is, when the values of the observables 
calculated from the PES remain constant upon addition of extra data points. 

Initially the dynamical sampling procedure used classical trajectory 
calculations to describe reactive PESs.(31-38,40-51) Bettens,(52) however, has 
demonstrated that using D M C walkers to sample configuration space is a cost-
effective method for constructing a PES for the tightly bound fluoromethane 
system. In this case approximately 100 ab initio data points were required for 
convergence of the ground state energy of fluoromethane. Loosely bound 
complexes pose a more difficult problem because the volume of configuration 
space that needs to be covered by the interpolated PES is much larger. We have 
therefore optimized the PES iteration procedure to efficiently construct a PES for 
the water dimer, a prototypical loosely bound complex.(53) 

This chapter presents the Grow algorithm for generating interpolated PESs 
and illustrates its optimization to the calculation of ground state properties of 
loosely bound complexes. Specifically we compare PES iteration schemes on an 
analytic PES for the water dimer (rather than using more computationally 
expensive ab initio calculations) and we sample new molecular configurations 
from the distribution of D M C walkers describing the ground state nuclear 
wavefimction. Having determined the most efficient methods of sampling 
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configuration space, the resulting Grow methodology is then applied to three 
loosely bound systems. 

1. l,2-ethanediol/l,2-ethanediol.water. 1,2-ethanediol (ethylene glycol) serves 
as a prototypical polyhydroxlated biomolecule and can be used to model 
more complicated species such as sugars and more complex carbohydrates. 
It has been the subject of intensive theoretical(54-79) and 
experimental(55,57,62,79-90) investigation, which has centred on the 
presence, or lack thereof, of an intramolecular hydrogen bond. Here we 
generate PESs for ethanediol and the ethanediol.water complex and use 
D M C bond-length distribution functions to identify hydrogen bonds in the 
ground state structures of both species. 

2. The glycyl radical. Glycine ( N H 2 - C H 2 - C O O H ) is the smallest amino acid 
and the glycyl radical is formed from glycine by radical abstraction of a 
hydrogen atom. The glycyl radical (NH 2 -*CH-COOH) provides a 
prototype for the intermediate in radical peptide reactions.(91) Glycine 
itself, in aqueous solution, exists as a zwitterion,(92) an overall neutral 
species with distinct, localized regions of positive and negative charge. 
Solvated glycine has a positively charged amino group on one end and a 
negatively charged carboxylate group on the other end of the molecule. 
The solvated glycyl radical, however, may exist as a neutral or zwitterionic 
species. Here we generate a PES for the glycyl radical loosely bound to 8 
water molecules (glycyl.8H 20) and use D M C techniques to describe the 
ground state structure. 

3. γ-amino butyric acid (GAB A) . G A B A ( N H 2 - C H 2 - C H 2 - C H 2 - C O O H ) is a 
larger amino acid than glycine. In the mammalian central nervous system it 
is the major inhibitory neurotransmitter and plays a key role in regulating 
the firing of neurons.(93) As such, G A B A is implicated in diseases and 
conditions such as epilepsy, schizophrenia, depression and Huntington's 
chorea.(93-96) New drugs acting at G A B A receptors therefore hold 
promise in treating these diseases. To design these drugs, however, it is 
important to know the biologically active form (or forms) of G A B A . 
G A B A is known to exist in a variety of zwitterionic conformations in 
aqueous solution(97,98) and we use D M C to investigate the conformational 
flexibility of ground state solvated G A B A , modelled as a G A B A . 5 H 2 0 
weakly bound complex. 

Quantum Diffusion Monte Carlo Calculations 

Our focus is on ground state properties of loosely bound complexes. 
Because many of the systems considered are large (up to 34 atoms in the case of 
glycine.8H 20), D M C calculations represent the only computationally feasible 
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method for calculating vibrational ground state wavefunctions. In each case the 
D M C simulations follow the same overall form, as outlined below and as 
illustrated schematically in Figure 1. 

The initial ensemble of M walkers is established by allowing a random 
fraction of a 0.5 Bohr displacement along each Cartesian axis of each atom from 
the specified minimum energy geometry (or geometries). The reference 
potential energy {Eref) of the ensemble of walkers is then calculated as an 
ensemble average. The D M C simulation then enters the propagation phase, 
consisting of walking and branching steps. During the walking step the atomic 
displacements are sampled from a Gaussian distribution with variance: 

var = — (1) 
mass 

where r i s the timestep, in atomic units, and mass is the mass, in atomic units. 
The new potential energy (£,) of the ensemble of walkers is evaluated 

before the branching step. During the branching step, the branching weight of 
each walker: 

is used to determine the number of walkers created, where rand is a random 
number between zero and one. For weights lower than 1.0, the walker is 
annihilated. For walkers with higher weights, w, -1 extra replicas are created, to 
give total population Pcurr. 

The D M C walkers are equilibrated for steps using the walking and 
branching algorithms as illustrated in Figure 1. After the equilibration steps 
have been completed, the D M C walkers are propagated for an additional Nprod 

steps. The ensemble average energy, E^, is accumulated at each step as are the 
wavefimction histograms. 

Finally, the ground state ZPE is calculated by averaging the accumulated 
Eens values. 

The D M C simulations are repeated Ν times, typically Ν = 10, and the 
results are quoted with errors corresponding to twice the standard error of the 
mean, 2<Ww, where σ is the standard deviation of the Ν independent D M C 
runs. 

The Grow Algorithm 

The Grow algorithm is an automated method that iteratively "grows" a 
molecular potential energy surface using ab initio calculations. It is described 
diagrammatically in Figure 2. 

D
ow

nl
oa

de
d 

by
 Y

O
R

K
 U

N
IV

 o
n 

Ju
ly

 4
, 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 D

ec
em

be
r 

31
, 2

00
6 

| d
oi

: 1
0.

10
21

/b
k-

20
07

-0
95

3.
ch

00
9

In Advances in Quantum Monte Carlo; Anderson, J., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2006. 



106 

• • ν • ν 
Ο ο 

• ° , ό —> ο ο ν ο ο 

w = 2 \ • • 
• => 

• 
ο · 

=> ο ο 
ο 

\ ο 

ο ο 

w = 0 

• · 
α 

• · 
ο Ρ 

ο 

ο ο 

ο 

ο ο • => 

α 
• · 

ο Ρ => 
w=l 

• · 
0 

ο 
ο 

ο • => ο · · · => ο 0 

w=l 
1. Initialization, 2. Walking, 3. Branching, 

Eref = Eem var = 2idmass w, = exp[-z(£ r£ r<?/)] + random # 

Figure 1. Schematic Representation of the Quantum Diffusion Monte Carlo 
Simulation 

Details of the modified Shepard interpolation scheme and the iteration 
techniques developed by Collins and coworkers to "grow" a PES may be found 
elsewhere.(31-38) The essential features of the Grow program, however, are 
summarised in Figure 2. 

This Chapter describes the use of D M C in place of "dynamical" calculations 
to describe the ground state properties of a loosely bound complex and the use of 
the D M C walker configurations to choose new geometries to add to the PES data 
set. 
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Figure 2. Schematic representation of the Grow algorithm for "growing" 
molecular potential energy surfaces. 
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calculation 
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initial ^ . 
, • run dynamics 

data set J 

Potential Energy Surface Interpolation Scheme 

The energy at an arbitrary molecular configuration is expressed, according 
to the modified Shepard interpolation scheme, as a weighted sum of Taylor 
polynomials in inverse interatomic distances, Ζ = {1/Λ;, 1/^2» — » I / ^ v - o } , about 
Nd data points defining the PES data set and their symmetry equivalents: 

^(Z) = Σ I ^ o / ( Z ) r g o / ( Z ) ( 3 ) 

geGi=\ v ' 

7XZ) is the Taylor series expansion about the./ data point, typically truncated at 
second order: 

3N-6 sy 
r /(Z) = ̂ [Z(/)]+ l[zk-zk(i)]-^-

k=\ OLk Z=Z(/) (4) 
d2V 1 3N-63N-6 

+ - Σ Σ[^-ζ,(/)]χ[ζ 7 ·-ζ 7(/)]-
2! k=\ J=\ dZkdZj Z=Z(i) 
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and w, is the normalized weight function, which gives the contribution of the i * 
Taylor expansion to the potential energy at configuration Z . The weight 
function w, is normalised by construction: 

w/(Z) = v/(Z) 
Ν 

Σ Σ ν * · (Ζ) 
geGi=\ 

(5) 

with the un-normalised primitive weight function, V/(Z), given by either a one-
part formula: 

ν , ( Ζ ) « | ζ - ζ , Γ (6) 

or a two-part formula: 

v,(Z) = 
"<"-l)/2f |Z-Z, | 2̂ 

I d k (/) J 
*(^i)/2fflz-z,|fl 

1, MO J 
(7) 

The un-normalized two-part weight function, Equation (7), includes dk(i) 
terms which are confidence lengths derived from Bayesian analysis of the 
interpolation data.(37) This type of weight function is more complex than the 
simple one-part weight function, Equation (6), but has been shown to give 
significantly greater accuracy in reactive systems(37,38) and for D M C 
calculations on the water dimer.(53) 

The notation g e G i n Equations (3) and (5) denotes the inclusion of all g 
elements from the permutation group G, which acts to interchange symmetry 
equivalent atoms in the system. Accordingly, g ο / denotes that the I t h data point 
is transformed by the group element g. In this manner, the interpolated PES is 
guaranteed to possess the correct nuclear permutation and inversion symmetry. 

The quality of the PES produced depends on two factors: the ab initio 
theory used to generate the derivative data for the Taylor polynomials and the 
location of the PES data points in configuration space. 

The PES interpolation scheme is illustrated in Figure 3 for two data points 
in one dimension using a simple one-part weight function, v,(Z) = 1/||Z - Z,-||2. 
Figure 3(a) shows the exact potential (heavy line) and second-order Taylor 
expansions about the two data points ( χ ) . Figure 3(b) indicates the effect of the 
weight function. At a point exactly half way between the two data points the 
interpolated potential weights the Taylor expansions of each equally. If, 
however, the point is only Va of the way from one data point to the next, the 
weight for the closest data point, using v,(Z) = 1/||Z - Z,|| 2, is 0.90 whereas the 
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Figure 3. One-dimensional representation of the modified Shepard 
interpolation scheme for potential energy surfaces. The heavy solid line 
represents the exact potential. In (a) the light-weight line represents two 

separate second-order Taylor expansions about the two data points marked (x), 
in (b) representative weights are indicated between the two data points, using 

the weight function vt(Z) = 7/| |Z - Z,|\ 2 and, in (c), the light-weight line indicates 
the interpolated potential based on the two indicated data points. 
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weight for the point further away is 0.10. In this way the interpolated potential 
weights the nearest data points most heavily. The final, interpolated potential is 
compared to the exact potential in Figure 3(c). 

Potential Energy Surface Iteration Scheme 

At the outset the interpolated PES is described by an initial set of data 
points. These may represent the reaction pathway for a reactive system, a set or 
subset of stationary points for a bound system or even a single point 
corresponding to the minimum energy configuration. The interpolated PES is 
then iteratively improved by adding data points to the initial data set. These 
points are sampled from the appropriate region of configuration space using 
some dynamical simulation of the system. Classical trajectories and the D M C 
walkers can both be used to sample the region of configuration space important 
to the ground state wavefunction. Classical trajectories have been shown to be 
appropriate for sampling the configuration space of reactive systems for both 
quantum(41-44) and classical(31-38,40,45-51) calculations of reaction dynamics. 
Although classical trajectory sampling has been used to grow surfaces for 
subsequent D M C calculations,(3,52) D M C simulations are more appropriate for 
sampling the configuration space of bound systems.(53) This is illustrated, in the 
following section, using the water dimer as a prototypical loosely bound 
complex. 

The Water Dimer: (H 20) 2 

The water dimer was chosen as a prototypical loosely bound system because 
analytic representations of the PES have previously been derived.(99-102) Use 
of an analytic PES is advantageous in that it allows the exact ZPE and ground 
state properties to be calculated by performing D M C calculations directly on the 
analytic surface, providing benchmark values for testing PES convergence. 
Moreover, calculation of the energies, first and second derivatives required for 
"growing" the PES is trivial and the overall computational expense of 
constructing sn interpolated PES is determined primarily by the convergence 
properties of the D M C calculations. Here the water dimer potential of Reimers, 
Watts, and Klein,(101) denoted SW91, was used in lieu of ab initio calculations 
to provide the data required by the potential surface interpolation algorithm, 
Equation (3). 

D M C simulations were run using the parameters specified in Tables I and II. 
Table I presents all of the parameters required to grow the PES and Table II the 
parameters used in the D M C calculations to test whether the interpolated 
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Table I. Parameters describing Grow calculations on the water dimer 

Parameter Value 
DMC-sampling calculations: 
Number of starting geometries 
Starting geometry 
Number of replicas, M , per starting 
geometry 
Maximum Cartesian displacement 
Time step, τ 
Number of equilibration steps, Neq 

Number of data-accumulating steps, 
Nprod 

1 
Global minimum on SW91 PES 
1000 

0.5 ao 
0.1 a.u. 
6 000 
20 000 

Potential Energy Surface 
Interpolation: 
G 
Taylor Series truncation 
Weight function: 
Ρ 

Q 

Confidence length, dk(i) 

Energy tolerance for dk{i) 

Sym(4)xSym(2); |G|=48 
2 n d order 
2-part 
24 
2 
Determined by 50 closest data 
points 
0.5 kJ/mol 

Table II. Parameters used in the DMC calculations to test convergence of 
the PESs for the water dimer 

Parameter Value 
Number of starting geometries 1 
Starting geometry Global minimum on SW91 PES 
Number of replicas, M, per starting 1000 
geometry 
Maximum Cartesian displacement 0.5 ao 
Time step, τ 0.1 a.u. 
Number of equilibration steps, Neq 18 000 
Number of data-accumulating steps, Ν 90 000 
Number of independent D M C 10 
calculations, Ν 
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PESs had converged. The D M C parameters used in the iteration procedure were 
not as "rigorous" as those used for the convergence calculations. This reflects 
the fact that the D M C walkers provide a representative sampling of the important 
regions in configuration space long before the D M C calculation itself has 
converged. As the interpolated PESs were being constructed the configurations 
accessed by the D M C walkers were printed to file once every 1000 timesteps. 
These configurations were then sampled according the regimes outlined below, 
and the chosen points were added to the PES data set. 

Two methods were used to determine which points to add from the sampled 
configuration space: 

1. Α-weight sampling.(32) Using this method the η configurations with the 
largest Α-weight, Equation (8), are added to the PES data set for the next 
iteration. 

Σ vj[Z(n)] 

h[Z(j)]= 1 n ^ n * j 

N-\ _ £ (8) 

geG 1=1 

That is, the η configuration Z(f) that are the "furthest" from the existing data 
points are added to the PES data set. 
rms sampling.(35,36) The single sampled configuration with the largest 
variance in predicted energy, σ ν as calculated in Equation (9), is added to 
the PES data set. 

σ ν

2 ( Ζ ) = Σ ïwgoi{Z)[Tgoi{Z)-V}2 (9) 
geGi=\ 

That is, the configuration Ζ for which the Taylor series estimates of the 
energy, T(Z), from the different existing data points, Z„ were most variant is 
chosen for addition to the PES data set. V in Equation (9) is the average of 
the Taylor series predictions of the energy. This method, however, allows 
only a single configuration to be added to the data set in any iteration. 

The two sampling methods have been utilized alone or in combination using 
a PES constructed using the two-part weight function, Equation (7), which was 
found to be more efficient than the one-part weight function.(53) The four 
sampling regimes considered were: 
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A . lrmslhwt: add one DMC-sampled rms configuration and one D M C -
sampled Α-weight configuration to the PES data set per iteration. This 
regime was used by Bettens to develop a PES for CH 3F.(52) 

B . Irms9hwt: add one DMC-sampled rms configuration and 9 DMC-sampled 
Α-weight configurations to the PES data set per iteration 

C. allrms: add one DMC-sampled rms-sampled configuration to the PES data 
set per iteration 

D. allhwt: add one DMC-sampled Α-weight configuration to the PES data set 
per iteration 

In calculations on the water dimer PES it was found that the D M C walkers 
sampled configurations significantly higher in energy than the ZPE. These 
configurations occurred with low probability and did not contribute significantly 
to the overall averaged ZPE but were weighted highly by both the Α-weight and 
rms-weight methods. To avoid the PES being dominated by such configurations, 
i f a selected DMC-sampled configuration had a predicted energy greater than 0.1 
E h above the global minimum energy it was rejected and the sampling procedure 
was repeated until an eligible point was added to the PES data set. 

The convergence of the water dimer ZPE and the wavefunction histograms 
were monitored, with respect to the equivalent quantities calculated on the 
analytic SW91 PES, for the PES iteration schemesoutlines above. 

Figure 4 plots the convergence of the water dimer ZPE for each of the 4 
regimes as a function of the number of unique data points in the PES data set. 
From Figure 4 it can be seen that regimes A , Β and C all appear to converge the 
water dimer ZPE upon the addition of 25-50 unique data points to the PES data 
set. In the case of the water dimer the most computationally efficient of the 
regimes considered was regime B , the addition of 1 rms and 9 Α-weight points 
per sampling run. This regime enabled the addition of 10 PES data points per 
iteration, thus reducing the number of DMC-sampling runs required and 
significantly reducing the overall computational expense of the PES iteration 
procedure. For other systems, however, i f the computational cost of the ab initio 
calculations required for each new data point is greater than the cost of the D M C 
calculations, regime A may be more efficient. 

The vibrationally-averaged 0 - 0 distance distribution function of the water 
dimer was also examined for the regime Β scheme with the results illustrated in 
Figure 5 for the initial, 1 point PES and the 100 data point PES. The 0 - 0 radial 
distribution function represents the projection of (|ψ|/4πΓ2)2 onto the 0 - 0 
distance. The wavefunction histogram was projected onto the O-O distance and 
then scaled by 4πι^ prior to squaring the wavefunction amplitude in order to 
account for the Jacobian of the transformation from space-fixed to internal 
coordinates. 
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121.5 Ί 

20 40 60 80 
Number of data points in PES 

100 

Figure 4. The ZPE of the water dimer as a function of the number of unique 
data points in the PES data file for PESs determined using iteration regime A 
(Ο), regime Β (Ο), regime C (A) and regime D (D). For reference, the exact 

result on the SW91 PES is indicated by the heavy solid line and the shaded 
rectangle. All errors represent two standard errors of the mean as calculated 

from 10 independent DMC simulations (Figure 3, reprinted with permission in 
Reference 53. Copyright 2004 American Institute of Physics). 

2.0 2.5 3.0 3.5 

O-O distance (Angstrom) 

Figure 5. The O-O radial distribution function from the ground state 
wavefunction of the water dimer as calculatedfrom the SW91 PES (heavy solid 

line) and using a 1 point PES (dotted line) and a 100 data point PES determined 
using DMC-sampling (light-weight line). 
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It can be observed from Figure 5 that the vibrationally averaged 0 - 0 
bondlength converges more slowly than the ZPE, Figure 4. That is, the radial 
distribution function is more sensitive to the nature of the PES than the ZPE 
with the slow convergence of the 0 - 0 radial distribution function reflecting the 
slow convergence of the PES in the 0 - 0 coordinate. A n examination of the 
PES along the 0 - 0 coordinate reveals that, although the repulsive wall at short 
0 - 0 distances is well described, it takes longer for the PES iteration scheme to 
adequately describe the PES at large 0 -0 distances.(53) 

The results illustrated in Figures 4 and 5, however, are encouraging. The 
water dimer PES is a 12-dimensional surface and Figure 4 shows that its ZPE is 
being reproduced (using the most efficient schemes) when the PES comprises 
approximately 50 unique data points. The 0 - 0 distribution function, however, 
is a more stringent test of convergence than the ZPE and more than 100 unique 
data points are needed to converge the water dimer PES with respect to this 
observable. 
The DMC-sampling scheme has been successfully incorporated into the current 
version of the Grow computer program, Grow2.2, (103) and this has been used to 
investigate a number of systems of biological interest. 

Intramolecular Hydrogen Bonding in Gas Phase and Hydrated 
1,2-Ethanediol 

1,2-ethanediol (ethylene glycol) is one of the simplest molecules with two 
adjacent hydroxyl groups. It therefore acts as a model compound for more 
complicated biological molecules such as sugars and carbohydrates. The 
presence of the two adjacent hydroxyl groups also allows the possibility of 
intramolecular hydrogen bonding. For these reasons there have been many 
previous theoretical (54-79) and experimental (55,57,63,79-90) studies of 1,2-
ethanediol and a smaller number of studies on solvated 1,2-
ethanediol.(61,63,64,66,68,75,76,82,84-86) 

The 1,2-ethanediol molecule has 10 symmetry distinct rotamers, Figure 6, 
which, provided at least a valence double-zeta basis and a theoretical method 
that includes electron correlation (at least density functional theory) have been 
used, all correspond to local minima on the molecular PES and lie within 
approximately 15 kJ/mol of the lowest energy structure, the tGg' isomer. Indeed 
the two lowest energy structures in the gas phase, the tGg' and gGg' conformera, 
were found by all of the previous investigations to differ in energy by 
approximately 1.7 kJ/mol. 

Because 1,2-ethanediol has a large number of low-lying miriima, with low 
(torsional) barriers to interconversion, quantum nuclear motion may be 
significant in determining the ground state structure of 1,2-ethanediol. Quantum 
nuclear motion is also important in describing the nature of light nuclei such as 
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hydrogen and an examination of the nuclear motion of the various protons may 
allow the extent of hydrogen bonding to be determined. Previous theoretical 
studies of 1,2-ethanediol, however, have characterised the molecule only in 
terms of its lowest energy structures.(54-61,65-74,77) The relative stabilization 
of the two gauche conformers, tGg' and gGg', has been taken as evidence of an 
intra-molecular hydrogen bond. Despite this, recent electron density 
studies(80,91) have concluded that 1,2-ethanediol does not possess an 
intramolecular hydrogen bond according to the criteria for bonding defined by 
Popelier.(104) We have used D M C calculations to calculate the ground state 
wavefunction of 1,2-ethanediol and monohydrated 1,2-ethanediol (1,2-
ethanediol.H20) in order to examine the extent of derealization of the O-H 
distribution function in both species and to use this as an indication of the 
formation of a hydrogen bond.(105) We have therefore posed the following 
questions: 

1. Does 1,2-ethanediol have an intramolecular hydrogen bond? 
2. How is the bonding in 1,2-ethanediol changed upon addition of a water 

molecule? 
3. How sensitive are the results to the level of ab initio theory used? 

PESs were grown for 1,2-ethanediol and l,2-ethanediol.H20 similarly to the 
water dimer case described above. Here, however, ab initio calculations were 
used to provide the energies and the first and second derivatives of the energy. 
Three different methods for treating electron correlation were used, second-order 
Moller-Plesset perturbation theory (MP2)(106) and two common Density 
Functional Theory methods B3LYP(107,108) and PW91(109-113). In all cases 
the Huzinaga-Dunning correlation consistent valence double-split basis set (cc-
pVDZ)(114) was used and the calculations were performed using the Gaussian 
03 program package.(115) Because the ab initio calculations were now more 
computationally expensive than the D M C calculations regime A was used to 
construct the PESs, that is, at each iteration of the PES one rms-weight and one 
Α-weight point was added to the PES data set. The parameters used to construct 
the various PESs are given in Table III and the parameters used in the converged 
D M C calculations are given in Table IV. Because of the higher dimensionality 
of 1,2-ethanediol and l,2-ethanediol.H20 as compared to the water dimer it was 
far less likely that the D M C walkers accessed high energy configurations. As a 
consequence an energy cutoff was not required, although the DMC-sampling 
calculations used a significantly smaller timestep than that used for the 
convergence calculations. 

For 1,2-ethanediol the initial set of starting geometries comprised 6 stationary 
points on the global PES corresponding to the tGg', tGt and tTt local minima and to 
transition states describing tGg' isomerization, tGt isomerization and conversion of 
tTt to tGt. Each of these configurations was considered to possess 192 symmetry 
equivalent structures, defined by permutation of the 2 equivalent carbon atoms, 
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Table III. Parameters describing Grow calculations on 1,2-ethanediol and 
l,2-ethanediol.H2Oa 

Parameter Value 
DMC-sampling calculations: 
Number of starting geometries 6(5) 
Starting geometries 3 lowest energy minima and 3 

interconnecting transition states 
(5 lowest energy minima) 

Number of replicas, M, per starting 150 (200) 
geometry 
Maximum Cartesian displacement 0.5 ao 
Time step, τ 0.1 a.u. 
Number of equilibration steps, Neq 1000 
Number of data-accumulating steps, 4 000 
Nprod 

Potential Energy Surface 
Interpolation: 
G Sym(4)xSym(2)xSym(2) xSym(2); 

|G|=192 
(Sym(2)xSym(2)xSym(2); |G|=8) 

Taylor Series truncation 2 n d order 
Weight function: 2-part 
Ρ 24 
Q 2 
Confidence length, *4(0 Determined by 50 closest data 

points 
Energy tolerance for d^i) 0.5 kJ/mol 
Choosing scheme 1 rms, 1 hwt 

a: if the parameter for l,2-ethanediol.H20 differs from that of 1,2-ethanediol it is 
indicated in parentheses. 

the 2 equivalent oxygen atoms, the 4 equivalent carbon-bound hydrogen atoms 
and the 2 equivalent oxygen-bound hydrogen atoms. 

The initial data set for l,2-ethanediol.H20 comprised 5 approximately 
isoenergetic local minima. In this case the permutation symmetry group was 
defined by considering all atoms distinct except the two hydrogen atoms bound 
to the water molecule, which are considered equivalent, and the two sets of two 
carbon-bound hydrogen atoms, where the hydrogen atoms in each set are 
considered equivalent. Although this symmetry group is minimal, it is expected 
to contain most of the feasible permutations encountered during the D M C 
simulation, as the atomic vibrational motion is small and atomic rearrangements 
are also not expected to occur through torsional motion. 
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Table IV. Parameters used in the DMC calculations to test convergence of 
the PESs for 1,2-ethanediol and l,2-ethanediol.H2Oa 

Parameter Value 
Number of starting geometries 6(5) 
Number of replicas, M, per starting 150(200) 
geometry 

3 lowest energy minima and 3 Starting geometries 3 lowest energy minima and 3 
interconnecting transition states 
(5 lowest energy minima) 

Maximum Cartesian displacement 0.5 ao 
Time step, τ 1.0 a.u. 
Number of equilibration steps, Neq 50 000 
Number of data-accumulating steps, Ν 50 000 
Number of descendent weighting 40 
generations 
Number of timesteps, descendent 20 000 
weighting 
Number of independent D M C 10 
calculations, Ν 
a: if the parameter for 1,2-ethanediol.H20 differs from that of 1,2-ethanediol it is 
indicated in parentheses. 

The ZPE and nuclear vibrational wavefunction for each species were 
determined using D M C calculations on the various interpolated PESs. 
Convergence of the PESs was monitored, in terms of the Z P E and nuclear 
vibrational wavefunction, after 1, 10, 25, 50, 75 and 100 data points had been 
added to the PES. 

Wavefunction histograms were obtained by binning the interatomic 
distances into 0.05 bohr bins for each walker at every time step of the simulation 
run and averaging over the 10 simulation runs. Vibrationally-averaged internal 
coordinates were obtained using the descendent weighting algorithm^ 116) 
These wavefunction histograms and vibrationally averaged coordinates were 
constructed without incorporating the complete nuclear permutation (CNP) 
symmetry. That is, all atoms and interatomic distances were artifically 
distinguishable to enable each interatomic distance to be monitored separately 
during the course of the D M C simulation. If required, the distributions could be 
averaged over the CNP equivalent internal coordinates to give physically 
relevant observables. 

The ZPE of 1,2-ethanediol and l,2-ethanediol.H20 is plotted, for the three 
levels of theory, as a function of the number of unique data points in the PES 
data set in Figures 7 and 8, respectively. 
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236.0 -ι 

Number of data points in PES data set 

Figure 7. Convergence of the ZPE with respect to the number of unique data 
points in the PES data set for 1,2-ethanediol PESs grown at the PW91/cc-pVDZ 

(O), B3LYP/cc-pVDZ (O) and MP2/cc-pVDZ (A) levels of theory. 

From Figures 7 and 8 it can be seen that the ZPE converges to within ± 0.5 
kJ/mol, for both molecules, and for all three levels of theory, once approximately 
100 data points have been added to the PES data set. From the figures we also 
observe that the ZPE of all three levels of theory falls within a 11.2 kJ/mol range 
with the following order: 

MP2>B3LYP>PW91 

The differences in ZPE reflect the underlying topology of the three PESs, for 
example, they suggest that the MP2 surface would, relative to the B 3 L Y P and 
PW91 surfaces, have either steeper walls, tighter minima, higher barriers, or 
some combination of these. This can also be seen, to an extent, in the 
equilibrium bond lengths predicted for 1,2-ethanediol at the three levels of 
theory. The equilibrium O-H bond lengths at PW91/cc-pVDZ are 0.010 A 
longer than those predicted at B3LYP/cc-pVDZ or MP2/cc-pVDZ for 1,2-
ethanediol and up to 0.015 A longer for l,2-ethanediol.H2O.(105) 

The O-H distribution functions were found to have converged for both 1,2-
ethanediol and l,2-ethanediol.H20 once 100 unique data points had been added 
to the PES data set.(105) This convergence is significantly faster than was 
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315.0 -ι 

290.0 -I 1 ι 1 1 ι 
0 20 40 60 80 100 

Number of data points in PES data set 

Figure 8. Convergence of the ZPE with respect to the number of unique data 
points in the PES data set for l,2-ethanediol.H20 PESs grown at the PW91/cc-

pVDZ (O), B3LYP/cc-pVDZ (O) and MP2/cc-pVDZ (A) levels of theory. 

observed for the 0 - 0 distribution function. The reason for this is the fact that 
the PES is significantly steeper in the bonded O-H coordinate than the non-
bonded 0 - 0 coordinate, for both the water dimer and ethanediol. The shallower 
PES in the 0 - 0 coordinate leads to large amplitude 0 - 0 vibrational motion; in 
1,2-ethanediol the full width half maximum (FWHM) of the 0 - 0 distribution is 
1.7 A whereas the F W H M for the O-H distribution is 1.2 A.(105) This leads to 
both greater uncertainty in the 0 - 0 distribution and slower convergence. The O-
H distribution functions are illustrated in Figures 9 and 10 for 1,2-ethanediol and 
l,2-ethanediol.H20, respectively. These figures present only the MP2/cc-pVDZ 
results on the 100 point interpolated PES and the insets are used to indicate the 
relevant O-H bonds in the two species. If hydrogen bonding occurs we would 
expect the O-H distribution of the Η involved in the hydrogen bond to be shifted 
to longer distances, that is, hydrogen bonding will lead to a more delocalized 
proton and a longer, weaker O-H bond. It is difficult, however, to resolve two 
O-H distributions in Figure 9 for 1,2-ethanediol: the standard error in the 
distributions is approximately twice the width of the lines. This implies that 
there is no resolvable proton derealization, to within the accuracy of the D M C 
calculation, and therefore no resolvable intra-molecular hydrogen bond in gas 
phase 1,2-ethanediol. Figure 10, however, indicates two resolvable O-H bond 
distributions, one at shorter and one at longer O-H distance. These two 
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Figure 9. O-H wavefunction histograms for gas-phase 1,2- ethanediol calculated 
from the converged 100 data point PES at the MP2/cc-pVDZ level of theory. 
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Figure 10. O-H wavefunction histograms for 1,2-ethanediol.H20 calculated 
from the converged 100 data point PES at the MP2/cc-pVDZ level of theory. 
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distributions correspond to the four O-H bonds indicated in the inset of Figure 
10, indicating two distinct proton environments. One corresponds to non-
hydrogen-bonded protons, and the O-H distribution function for these protons is 
the same as that in 1,2-ethanediol, Figure 9. The other proton environment 
corresponds to hydrogen-bonded protons, indicative of intermolecular hydrogen 
bonding with the oxygen from the water molecule. 

The 0 - 0 heavy-atom distance is another indicator of hydrogen 
bonding.(l 17) This distance contracts upon formation of a hydrogen bond. In 
l,2-ethanediol.H20 the intramolecular O-O distance was found to be 
approximately 0.3 Â longer than the intermolecular O-O distance for all methods 
considered. The intermolecular 0 - 0 distance was found to be approximately 
2.75 Â,(105) consistent with the presence of a weak intermolecular hydrogen 
bond. Together with the O-H distributions in Figure 10, this is conclusive 
evidence of intermolecular hydrogen bonding. There is no such conclusive 
evidence for intramolecular hydrogen bonding in l,2-ethanediol.H20. 

Thus, we have shown that the nature of the O-H distribution function can be 
used to confirm the presence of a hydrogen bond in a molecule like 1,2-
ethanediol. Our calculations show that, at the MP2/cc-pVDZ, B3LYP/cc-pVDZ 
and PW91/cc-pVDZ levels of theory there is no evidence for intramolecular 
hydrogen bonding in either 1,2-ethanediol or l,2-ethanediol.H20. The hydrated 
species, l,2-ethanediol.H20, however, has been shown conclusively to have two 
intermolecular hydrogen bonds with the water molecule. Although the three 
levels of theory studied exhibited the same overall trends,(105) the values of the 
Z P E differed significantly and, in particular, the PW91 density functional 
overestimated the O-H distances with respect to MP2 and B 3 L Y P . 

The Nature of the Glycyl Radical 

Glycine, N H 2 - C H 2 - C O O H , is the smallest amino acid and exists in aqueous 
solution in its zwitterionic form: ^ H a - C H ^ C O O " . Because of its small size 
and computational tractability glycine has been used as a model for peptide 
reactions. The glycyl radical, N H 2 - ' C H - C O O H , therefore serves as a model 
for the peptide radicals formed in many biological processes.(91) The aqueous 
phase structure (the predominant biological environment is aqueous) of the 
glycyl radical is not known experimentally, nor has the vibrationally averaged 
structure been determined theoretically. Like 1,2-ethanediol, there are multiple 
local minima on the PES with low energy barriers to interconversion. In this 
case, however, the glycyl radical PES possesses minima corresponding to both 
neutral and zwitterionic conformers. In an attempt to model aqueous phase 
structure we have constructed a PES, using the Grow methodology, for the 
hydrated radical, glycyl.8H 20 using B3LYP/6-31+G* calculations. This 
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method has been previously benchmarked against G3/MP2 calculations and 
shown to reproduce trends in relative energies. The initial PES data set 
comprised 8 low energy conformers, 4 neutral and 4 zwitterionic. Similarly to 
1,2-ethanediol, torsional motion interconverts many of the neutral and 
zwitterionic conformers. The tautomerization between the neutral and 
zwitterionic species also occurs with a low barrier through water-facilitated 
proton transfer. For glycine, this barrier is approximately 9 kJ/mol.(l 18) The 
parameters used to "grow" the PES are given in Table V and the parameters for 
the final converged D M C calculations are given in Table VI. 

The D M C calculations were started using 8 "seed" geometries, 
corresponding to the 4 lowest energy neutral and zwitterionic conformations. 
The Grow algorithm incorporated the nuclear permutation symmetry of the 
complex, with the two hydrogen atoms on each water molecule considered 
equivalent as were the two amino hydrogen atoms and the two carboxylate 
oxygen atoms. The order of the CNP group used was therefore 1024. Thus, for 
every data point calculated on the glycyl.8H 20 PES the 1024 symmetry 
equivalent structures were added to the data set. The procedure for the D M C -
sampling of configuration space involved using 100 walkers per seed geometry 
and allowing 500 steps of 1.0 a.u. for equilibration. After equilibration the 
walkers were propagated for a further 100 steps with all walker configurations 
saved every 10 steps. Two new configurations were chosen each iteration from 
these sampled geometries by taking the point of highest rms-weight and the point 
of highest A-weight (regime A , above). After 280 unique data points had been 
added to the PES the D M C wavefunction was calculated and the N - H and O-H 
bond length distribution functions were determined using descendent weighting. 
The "pattern" of these distribution functions was used to determine the nature of 
ground state glycyl.8H 20. 

Similarly to 1,2-ethanediol the D M C distribution functions were obtained by 
explicitly labelling the atoms, that is, removing the CNP symmetry. The N - H 
and O-H bond length distribution functions for the three terminal hydrogen 
atoms are shown in Figures 11 and 12, respectively. In both figures the three 
lowest energy structures are indicated as insets, where the 8 water molecules 
have been omitted for clarity. Structure (a) is the lowest energy zwitterion and 
structures (b) and (c) represent the lowest energy neutral conformers, the colour 
code is H=light grey, C=black, N=dark grey and 0=mid grey. 

The pattern of the distribution functions shown in Figures 11 and 12 is 
indicative of the structure of the hydrated glycyl radical. There are two distinct 
N - H distributions shown in Figure 11 and three distinct O-H distributions shown 
in Figure 12. The zwitterionic structure, structure (a), should have a single (to 
within the resolution of the figures) N - H distribution at short N - H distance, 
approximately 2 bohr, and three O-H distributions, all at large O-H distance. 
The neutral conformers, (b) and (c) should show two peaks in the N - H bond 
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Table V. Parameters describing Grow calculations on the hydrated glycyl 
radical, glycyl .8H 2 0 

Parameter Value 
DMC-sampling calculations: 
Number of starting geometries 8 
Starting geometries 4 lowest energy neutral and 4 lowest 

energy zwitterionic conformers 
Number of replicas, M , per starting 100 
geometry 
Maximum Cartesian displacement 0.5 ao 
Time step, τ 1.0 a.u. 
Number of equilibration steps, Neq 500 
Number of data-accumulating steps, Ν 100 

Potential Energy Surface Interpolation: 
Sym(2)1 0; |G|=1024 G Sym(2)1 0; |G|=1024 

Taylor Series truncation 2 n d order 
Weight function: 2-part 
Ρ 24 
Q 2 
Confidence length, djif) Determined by 50 closest data points 
Energy tolerance for d^i) 0.5 kJ/mol 
Choosing Scheme 1 rms, 1 hwt 

Table VI. Parameters used in the DMC calculations on the hydrated glycyl 
radical, glycyl .8H 2 0 

Parameter Value 
Number of starting geometries 8 
Starting geometries 4 lowest energy neutral and 4 lowest 

energy zwitterionic conformers 
Number of replicas, M , per starting 100 
geometry 
Maximum Cartesian displacement 0.5 ao 
Time step, τ 1.0 a.u. 
Number of equilibration blocks, Neq 50 000 
Number of data-accumulating blocks, Ν 50 000 
Number of independent D M C 10 
calculations, Ν 
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Ο 2 4 6 8 10 
Ν-Η distance (Bohr) 

Figure IL N-H wavefunction histograms for glycyl.8H20 calculated from a 280 
point B3LYP/6-31+G* PES, with three low energy conformers inset. 
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Ο 2 4 6 8 10 
Ο-Η distance (Bohr) 

Figure 12. O-H wavefunction histograms for glycyl.8H20 calculated from a 280 
point B3LYP/6-31+G* PES, with three low energy conformers inset. D
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length distribution function, with a single peak at short N - H distance 
corresponding to the two hydrogen atoms bound to the nitrogen and a second 
peak at significantly longer N - H distance corresponding to the O-H bound 
hydrogen. The distribution shown in Figure 11 is therefore consistent with either 
neutral conformer. 

The O-H distribution function in Figure 12 shows three distinct peaks with 
approximately equal amplitude. The peak at smallest O-H distance occurs at 
approximately 5.9 bohr (3.1 A) which is a relatively short non-bonded distance 
(indeed it corresponds to a very weak hydrogen-bonded distance). This is 
compatible with the cis configuration of the carboylic acid group, structure (c), 
rather than the trans configuration, structure (b), which would have a longer O-H 
distance, it is not compatible with the zwitterionic structure, structure (a). If 
there were significant derealization of the glycyl radical structures we would 
expect the bond length distribution functions to be significantly broadened and 
their amplitudes to reflect the extent of derealization. Neither features are 
apparent in Figures 11 or 12. Thus we conclude that the glycyl.8H 20 species, at 
the B3LYP/6-31+G* level of theory, exists as a neutral molecule with a 
conformation corresponding to structure (c) in Figures 11 and 12. Despite this, 
we should still be cautious about interpreting the structure of the solvated glycyl 
radical. Although a solvation sphere consisting of 8 water molecules is a 
relatively good model for short-range solvation, the 8 water molecules can 
encircle the glycyl radical and are relatively effective at screening the glycyl 
radical's charge distribution, long-range solvent effects are omitted. In a 
dielectric model for long range solvation, for example, the species with the 
largest dipole moment will be preferentially stabilized by electrostatic 
interactions with the continuum, thus long-range solvation effects will serve to 
stabilize the zwitterionic form over the neutral form. 

The Structure of Ground State γ-Aminobutyric Acid (GABA) 

G A B A , N H 2 - C H 2 - C H 2 - C H 2 - C O O H , is a larger amino acid than glycine 
and has conformational flexibility about the saturated C-C bonds in its backbone. 
Like glycine, aqueous phase G A B A is known to exist as a zwitterion, 
4 N H 3 - C H 2 - C H 2 - C H 2 - - C O O " , and furthermore N M R experiments suggest that a 
number of conformers are present at room temperature.(97,98) 

Because of its biological significance, the structure of aqueous phase G A B A 
has relevance to the design of neuroinhibitory drugs to treat diseases such as 
depression, epilepsy and schizophrenia.(93-96) We have modelled aqueous 
phase G A B A using a solvation sphere consisting of 5 water molecules, that is, as 
G A B A . 5 H 2 0 . At the MP2/6-31+G* level of theory G A B A . 5 H 2 0 exists 
as a zwitterion with 9 local minimum energy structures on the PES.(119) 
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These structures are illustrated in Figure 13, where the water molecules and the 
non-terminal hydrogen atoms have been omitted for clarity. 

The 9 zwitterionic conformers, Figure 13, can also be characterized in terms 
of their C - C - C - C and N - C - C - C dihedral angles, which are illustrated 
diagrammatically in Figure 14. These dihedral angles are given for the 9 
minima, zwl-zw9, along with their relative electronic energies, in Table VII. 

Figure 13. The 9 zwitterionic optimized local minima, zwl-zw9, obtained for 
GABA. 5H20 at the MP2/6-31+G * level of theory. The explicit water molecules 
have been removed for clarity and only the terminal hydrogen atoms have been 

displayed. (Reproduced with permission from reference 105. Copyright 2005 
American Institute of Physics.) 

H î N \ / ~ & / C 0 0 ' H î N N J 3 \ / C 0 0 " 
Figure 14. Diagrammatic representation of the C-C-C-C and N-C-C-C 

dihedral angles in GABA. 
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Table VII. The 9 local minima on the GABA.5H zO PES (Figure 13) 
characterized by their C - C - C - C and N - C - C - C dihedral angles and their 

relative electronic energies, ΔΕ. 

Structure C-C-C-C η N-C-C-C η ΔΕ (kJ/mol) 
zwl 174 -55 63 
zw2 -176 178 86 
zw3 -161 71 60 
zw4 -56 148 11 
zw5 -47 85 0 
zw6 -41 -49 20 
zw7 81 -72 17 
zw8 60 -90 8 
zw9 39 48 7 

From Table VII it can be seen that the lowest energy G A B A . 5 H 2 0 structure 
is zw5 (Figure 13), although three other conformers lie within 11 kJ/mol in terms 
of their electronic energy. Again, similarly to 1,2-ethanediol and the glycyl 
radical, G A B A . 5 H 2 0 has multiple local minima on its PES with relatively low 
(torsional) barriers to interconversion. Given the experimental evidence, we 
expect G A B A to be delocalized over two or more structures at room temperature 
and this may well be reflected in the ground state structure. 

Because of its large size we have not "grown" a PES for G A B A . 5 H 2 0 . 
Instead we have generated a full, 87-dimensional PES for G A B A . 5 H 2 0 by 
interpolating the surface from 9 data points corresponding to the 9 local minima 
shown in Figure 13. The ground state structure of G A B A . 5 H 2 0 has then been 
investigated by performing D M C calculations on this PES. The parameters used 
in the D M C calculations are given in Table VIII. Due to the large size and 
conformational flexibility of the G A B A . 5 H 2 0 complex, the D M C calculations 
converge slowly and, as a result, we have let the D M C calculation converge over 
1 000 000 total time steps. 2 000 D M C walkers were initiated for each of the 9 
minimum energy structures. In each of 100 independent D M C simulation runs 
the D M C walkers all equilibrated to a single well on the PES. Within an 
individual simulation there was no derealization observed. The majority of 
D M C simulation runs equilibrated to the well corresponding to the zw5 
structure, however, some simulations also populated the zw4, zw6, zw7, zw8 and 
zw9 wells. The fact that individual simulation runs were trapped in a single well 
suggested that the interpolated PES overestimates the barriers to torsional 
motion. 
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Table VIII. Parameters used in the DMC calculations on the hydrated 
GABA, GABA . 5H 2 0 

Parameter Value 
Number of starting geometries 9 
Starting geometries 9 zwitterionic local minima, z w l -

zw9 
Number of replicas, M , per starting 2000 
geometry 
Maximum Cartesian displacement 0.5 ao 
Time step, τ 1.0 a.u. 
Number of equilibration steps, Neq 500 000 
Number of data-accumulating steps, 500 000 
Nprod 

Number of independent D M C 100 
calculations, Ν 

The ground state wavefunction was approximated by combining the results 
of all 100 independent D M C simulations. Its structure was further investigated 
by binning the C - C - C - C and N - C - C - C dihedral angles, Figure 14, directly. 
The resulting dihedral angle distributions provide a measure of the 
conformational flexibility of the hydrated G A B A molecule and the C - C - C - C 
and N - C - C - C distributions are illustrated in Figures 15 and 16, respectively. 

It is important to note that Figures 15 and 16 do not represent probability 
densities but are directly calculated from the wavefunction. Figures 15 and 16, 
however, do reflect the essential features of the probability density. It can be 
seen from Figures 15 and 16 that, although the maxima in the dihedral angle 
distributions occur at angles corresponding approximately to those in the 
minimum energy conformer (-47° for C - C - C - C and 85° for N - C - C - C ) there is 
significant structure in both distribution functions. There is a second distinct 
peak in the C - C - C - C dihedral angle distribution at approximately +55° and 
shoulders at approximately -70° and -10°. These features are consistent with a 
number of local minima: zw4, zw5, zw6, zw8 and zw9. The N - C - C - C dihedral 
angle distribution, Figure 16, is even more complex. There are features at 
approximately -90°, -60°, -20°, 30°, 80°, 110° and 120°. Again these are 
consistent with a number of local minima. The shapes of the dihedral angle 
distribution functions, the number of features and their width, are indicative that, 
when the results are averaged over 100 independent D M C simulation runs there 
is significant derealization at 0 K , even though each simulation converged 
individually to a single well. As mentioned earlier, these results suggest that the 
interpolated PES overestimates the barriers to torsional motion and it may be 
worthwhile characterizing the torsional transition states and adding them to the 
PES data set. 
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Figure 15. The C-C-C-C dihedral angle distribution in GABA.5H20 binned 
directly from the DMC walkers from 100 independent DMC simulations. 
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Figure 16. The N-C-C-C dihedral angle distribution in GABA. 5H20 binned 
directly from the DMC walkers from 100 independent DMC simulations. 
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In terms of the averaged results we would expect a high degree of torsional 
flexibility in the ground state of G A B A . 5 H 2 0 and the increasing presence of 
additional conformers as the temperature is increased, consistent with the N M R 
experimental data.(97,98) 

Conclusions 

This chapter has presented the Grow2.2( 103) computer package. This 
package uses a modified Shepard interpolation to interpolate a molecular PES 
from ab initio data at a discrete set of data points. The PES is then iteratively 
improved by adding additional PES data points until convergence is obtained in 
any given property or properties of interest. The additional data points are 
chosen via a dynamical sampling of the configuration space relevant to the 
particular property of interest. The new implementation of the program allows 
the use of D M C calculations to both sample the relevant molecular configuration 
space and to calculate ground state properties of the molecule. We have shown 
that, for loosely bound complexes, DMC-based sampling provides an efficient 
means of iteratively building up a PES that describes the ground state properties 
of the complex. Various PES iteration schemes were tested with respect to an 
analytic PES for the water dimer and the techniques were then applied to three 
systems of biological interest. 

We first applied the Grow2.2(103) methodology to gas-phase and 
monohydrated 1,2-ethanediol. These molecules are prototypical poly-
hydroxylated species and we investigated intra and intermolecular hydrogen 
bonding in the two species by generating converged molecular PESs at the 
MP2/cc-pVDZ, B3LYP/cc-pVDZ and PW91/cc-pVDZ levels of theory. 
Although we found no conclusive evidence for an intramolecular hydrogen bond 
in either species the O-H bond length distribution functions obtained from D M C 
calculations were used to demonstrate the presence of intermolecular hydrogen 
bonds in the l,2-ethanediol.H20 complex. Upon hydrogen bonding the O-H 
distribution function was observed to shift to longer O-H distances, indicating 
derealization of the hydrogen-bonded proton. 

A second application was to the hydrated glycyl radical, glycyl.8H 20, which 
serves as a model for radical peptide intermediates. The aqueous phase structure 
of the glycyl radical is not known and it could exist in either neutral or 
zwitterionic forms. We investigated the nature of the glycyl.8H 20 complex by 
growing a 280 point PES at the B3LYP/6-31+G* level of theory. D M C 
calculations on this surface showed that ground state glycyl.8H 20 exists as a 
neutral molecule and not a zwitterion. 
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D M C calculations were also used to investigate the ground state structure of 
another hydrated amino acid, γ-aminobutyric acid (GABA) , a target for new 
drugs to treat a number of neurological diseases. A global PES was generated 
for the G A B A . 5 H 2 0 complex based on the 9 local minima characterized on the 
MP2/6-31+G* PES. D M C calculations on this PES were then used to 
demonstrate the conformational flexibility of ground state G A B A . 5 H 2 0 . 
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Chapter 10 

Ab Initio Biomolecular Calculations Using Quantum 
Monte Carlo Combined with the Fragment Molecular 

Orbital Method 

Ryo Maezono1,2, Hirofumi Watanabe3,4, and Shigenori Tanaka3,4,* 

1National Institute for Materials Science, Tsukuba 305-0047, Japan 
2 PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, 

Kawaguchi City, Saitama 332-0012, Japan 
3Graduate School of Science and Technology, Kobe University, Rokkodai, 

Nada, Kobe 657-8501, Japan 
4 CREST, Japan Science and Technology Agency, 4-1-8 Honcho, 

Kawaguchi City, Saitama 332-0012, Japan 

A novel computational scheme for the electronic states of 
biomolecules is proposed on the basis of the quantum Monte 
Carlo (QMC) method combined with the fragment molecular 
orbital (FMO) method. The latter provides an accurate and 
very efficient framework for calculating the molecular orbitals 
of huge systems through parallel computations for divided 
subsystems, thus enabling the applications to realistic proteins 
and nucleic acids with chemical accuracies. The feasibility of 
the proposed method is illustrated for a small polypeptide, the 
glycine trimer, as a benchmark test. 

Introduction 

The quantum Monte Carlo (QMC) method {1,2) provides a very accurate 
computational approach that goes beyond the single-particle or mean-field 
approximation to solve the Schroedinger equation, taking into account the 
electron correlation effects appropriately. Simplicity of the methodology is 
another advantage of the method, which enables the combination with other 

© 2007 American Chemical Society 141 
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computational methods with ease. For example, the implementations combined 
or associated with the variational theories, the Hartree-Fock (HF) approximation 
and the density functional theory (DFT) approaches have been carried out in the 
fields of quantum chemistry, solid state physics and condensed matter theories 
(7,2). In this report, we address a problem for which the Q M C method would be 
combined with a novel quantum chemical approach called the fragment 
molecular orbital (FMO) method (5-7) that provides a framework to perform the 
ab initio electronic state calculations for huge biomolecules with high accuracy. 

Fragment Molecular Orbital (FMO) Method 

The application of quantum mechanical methods to large molecules such as 
proteins and nucleic acids provides a great challenge in theoretical chemistry. 
The calculations of electronic states for biomolecules are usually formidable due 
to their huge size, and some ingenious techniques are required to make them 
feasible. While the idea of the fragmentation of the whole system is 
straightforward and appealing for the reduction in computational cost, 
difficulties always take place concerning the inaccuracies due to the artificial 
breakage of chemical bonds and the systematic reconstruction of observable 
properties. Among a number of these approaches, however, the F M O method 
proposed by Kitaura et al (5-7) affords a very promising way to retain the 
chemical accuracies in energy and other properties in the applications to huge 
biopolymers. 

The F M O method (5-7) relies on the division of a large molecular system into 
a collection of small fragments and on molecular orbital (MO) calculations for 
the fragments (monomers) and their pairs (dimers) performed to obtain the total 
energy and other molecular properties. The total electronic energy of molecule 
can then be calculated as E=XE I +^(E I J -E r Ej) , where E\ and Eu represent the 
energies of fragment monomers {1} and dimers {I,J}, respectively, calculated 
under the electrostatic potentials from other surrounding fragments 
(environmental electrostatic potentials). The F M O method thus avoids the costly 
M O calculation of the whole system of a large molecule and reduces the 
computational time remarkably. Another advantage of this method is its ease in 
utilizing parallel processing, since the fragments and the fragment pairs can be 
treated independently. 

A number of test calculations have been already performed (5-7) concerning 
the accuracy and efficiency of the F M O method, providing extremely promising 
results for the applications to biomolecules. For example, the errors due to the 
fragmentation in the total energy are less than a few kcal/mol for small proteins. 
Actual implementations of the F M O method have been carried out in terms of 
the softwares such as G A M E S S (8-17), NWChem (72,75), and ABINIT-MP 
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(14-19). The F M O calculations beyond the HF approximation are also available 
on these programs, such as the second-order Moeller-Plesset (MP2) perturbation, 
the configuration interaction (CI), and DFT calculations. 

Combination of QMC with FMO Method 

There are several practical considerations in establishing a combined 
approach of F M O and Q M C methods. First, the F M O methodology is essentially 
amenable to parallel computations (5-7P). In the case of proteins, one or two 
amino-acid residues are usually employed as a fragment, which typically 
contains tens to hundreds of electrons and therefore provides a good target of 
Q M C calculations (1,2). Secondly, highly accurate calculations are often 
required only for the active sites of biomolecules. The capability of divided or 
hierarchical calculations in the F M O method (5-/P) would then enable us to 
focus on some special fragments to which the Q M C method should be applied. 

The implementation of the coupling between the F M O and Q M C methods 
was carried out by employing the ABINIT-MP (19) and CASINO (20) codes for 
the F M O and Q M C calculations, respectively. We first perform the F M O 
calculations usually at the HF level and obtain the MOs for all the fragment 
monomers and dimers including the contributions of electrostatic fields from the 
surrounding fragments. We then proceed to the Q M C calculations using these 
MOs, where we rely on the CASINO code. For example, the output files 
obtained by the HF/FMO calculations are utilized as input files for performing 
the HF/VMC(variational Monte Carlo) calculations for all the fragment 
monomers and dimers in which the environmental electrostatic fields are 
constructed on the basis of the charge distributions of fragments obtained by the 
F M O and Q M C calculations. After the examination that the identical energies 
are recovered at the HF level by the Monte Carlo calculations, we could proceed 
to the inclusions of cusp correction (21) and electron correlations. For the latter 
calculations, the V M C method with the Jastrow factors and the diffusion Monte 
Carlo (DMC) method would be employed. The details of these implementations 
will be described elsewhere (22). 

Benchmark Calculation: Glycine Trimer 

As a test case, we have applied the Q M C / F M O method to the total energy 
calculation of glycine trimer. In this report, we illustrate the results based on the 
HF variational calculations (HF/VMC method). The structure of glycine trimer 
was constructed by the HF optimization with the minimal basis set STO-3G 
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starting from the α-helix initial structure. We have first carried out the usual HF 
and H F / F M O calculations for glycine trimer with the basis set STO-3G. In the 
latter calculation, we employed the ABINIT-MP program (79) and the total 
system was divided into three fragments at the C a sites. The total energies 
obtained with the conventional M O and F M O methods agreed with each other 
within the error of 0.1 kcal/mol (Table I). Using the calculated MOs, we have 
next performed the H F / V M C calculations for the identical system without the 
cusp correction using the CASINO code (20). We have thus found that the 
H F / V M C energy without the F M O approximation agreed with the conventional 
HF energy and with the H F / V M C energy with the F M O approximation within 
the estimated error bars (Table I). We have also compared the energies for 
fragment monomers {1} and dimers {I,J} between the H F / F M O and 
H F / V M C / F M O approximations, which are listed in Table II. 

With the inclusion of the cusp correction (27), we could expect that the 
electronic energies would be lowered. The comparisons of the total and fragment 
energies are illustrated in Tables I and II, showing that the H F / V M C energies 
decrease by about 5 a.u. both with and without the F M O approximations by 
including the cusp correction. These total energies with the cusp correction 
agreed with each other within the estimated error bars. 

We have next included the effects of electron correlations in terms of the 
Jastrow factors. The agreement between the V M C and V M C / F M O energies has 
been found to be excellent, which will be reported elsewhere (22). 

Table I. Energies of glycine trimer obtained by various methods 

Methods HF HF/VMC HF/VMC(cusp) 
Full M O -687.3875159324 -687.6(6) -692.69(6) 

F M O -687.3873537360 -687.9(4) -692.60(7) 

N O T E : Units are hartree (a.u.). The number in the parenthesis refers to the estimated 
error in the last digit. The HF/VMC(cusp) represents the HF/VMC calculation with 
the cusp correction. 

Summary and Perspective 

This is a first report concerning a combinatorial approach of Q M C and 
F M O methods for electronic state calculations for biomolecules. We have here 
proposed the basic concept and strategy, and illustrated them in a benchmark test 
calculation for glycine trimer. While the example herein is confined to the HF 
level calculations, the calculations including the electron correlation effects are 
in progress, which will be shown elsewhere (22). We are also attempting the 
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Table II. Energies of fragment monomers and dimers of glycine trimer 
obtained by various methods 

Fragments HF HF/VMC HF/VMC(cusp) 

{1} -122.7992645203 -122.97(8) -123.55(1) 
{2} -307.6073508713 -307.6(1) -309.13(2) 
{3} -683.4622078107 -683.5(3) -686.32(3) 
{1,2} -518.3118234031 -518.3(1) -520.59(2) 
{1,3} -885.1526697326 -885.4(2) -888.83(3) 
{2,3} -1218.9137127138 -1218.9(2) -1223.40(3) 

N O T E : Units are hartree (a.u.). The number in the parenthesis refers to the estimated 
error in the last digit. The HF/VMC(cusp) represents the HF/VMC calculation with 
the cusp correction. 

calculations for nucleic acid systems such as stacked base pairs in D N A , where 
the dispersion force associated with the electron correlations is expected to play 
an important role (23). In addition to these benchmark calculations, we will 
apply this novel Q M C / F M O approach to much larger biomolecular systems in 
terms of parallel computations substantiated in the F M O scheme. 
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Chapter 11 

Vibrational Excited States by Diffusion Monte Carlo 

Anne B. McCoy 

Department of Chemistry, The Ohio State University, 
Columbus, OH 43210 

Methods for evaluating vibrationally excited states by D M C 
within the fixed-node approximation are described. Two 
central issues are identified. The first, and most important, is 
the identification of the coordinates that will be used to 
describe the molecular vibrations. The second is the 
determination of where the node should be placed. Strategies 
for addressing both of these issues are discussed within the 
context of the fundamental vibrations in Ne 2 OH and H3O2

-. 

Introduction 

One of the greatest challenges for and limitations of the Diffusion Monte Carlo 
(DMC) approach is the treatment of nodes. This is clearly a problem for any 
application of D M C to electronic structure problems. For vibrational problems, 
even i f the ground state is nodeless, it is unusual for that to be the only state of 
interest, and excited states all contain nodes. 

In cases where the functional form of the ΛΜ dimensional nodal surface is 
known, the solution is straightforward, since the behavior of a wave function in 
the vicinity of a node is identical to that when the potential is forced to be 
infinite along this surface (/). Specifically, the wave function goes to zero at the 
node, and its first derivative is finite and constant across the node. 

This can be readily seen in one-dimension. Consider the first excited state 
for the harmonic oscillator potential, Vx(r) = kl2 r1. The energy of this state is the 
same as the energy of the ground state wave function of potentials that are 
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defined as 

00 r <0 

y*) r>0 (1) 

and 

r<0 
(2) 

r > 0 

In addition, the wave function that corresponds to the first excited state solution 
to the Schrodinger equation, where the full harmonic oscillator potential is used, 
is identical, within a constant factor, to the ground state solution for the potential 
in Eq. (1) for r > 0 and the ground state solution for the potential in Eq. (2) for r 
<0. 

As this example demonstrates, when we know where the node should be 
located, an excited state calculation reduces to a series of ground state 
calculations in each of the regions over which the wave function does not 
change sign. These separate calculations can be readily performed by D M C 
approaches. Nearly thirty years ago Anderson described an algorithm for 
evaluating excited state wave functions within a fixed-node approximation (7). 
As we learn from the particle-in-a-box system, the wave function must be zero 
in regions in configuration space where the potential is infinite. Within D M C , 
this means that a walker that crosses a node, or tries to cross into a region, in 
which the potential is infinite, must be removed from the simulation. In the 
limit of infinitely short time-steps, such a condition is sufficient to ensure that 
the excited states are properly described. For finite time-steps, the probability 
that a walker crosses the nodal surface twice must be accounted for. This is 
achieved through a recrossing correction, which provides the probability that a 
walker that remains on the same side of a nodal surface has followed a path in 
which it crossed the node twice (/). Specifically, the probability that a walker 
has crossed a node twice is given by 

where *'and provide the distance of the walker from the nodal surface 
before and after the step was taken and 

(3) 

D
ow

nl
oa

de
d 

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n 
Ju

ly
 4

, 2
01

2 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e:

 D
ec

em
be

r 
31

, 2
00

6 
| d

oi
: 1

0.
10

21
/b

k-
20

07
-0

95
3.

ch
01

1

In Advances in Quantum Monte Carlo; Anderson, J., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2006. 



2 2 Δ Γ 
σ = 

m 

149 

(4) 

The above procedure is effective and efficient, but it requires knowledge of 
the position of the nodal surface. This can be argued to be the greatest challenge 
for applying D M C to electronic states. For vibrational problems, the challenges 
are more or less severe, depending on the aspect of the problem one focuses on. 
The challenges come from the smaller energy differences among vibrational 
states, compared to electronic problems. Therefore it is difficult to make 
compelling arguments about properties of molecular vibrations with knowledge 
of only the ground state wave function, although our recent work on C H 5

+ has 
shown that we can extract considerable information from the ground state wave 
functions (2,3). On the other hand, the ground vibrational state is nodeless. 
Further, in the limit of small amplitude vibrations, the vibrations of an TV-atomic 
molecule can be described in terms of 3N-6 uncoupled harmonic oscillators. The 
definition of these coordinates can be readily obtained by diagonalizing the 
Hessian in mass-weighted Cartesian coordinates. In this limit, the fundamentals 
correspond to states where the nodal surface is defined by qt = 77,·. In other 
words, for a system with η vibrational degrees of freedom, the nodal surfaces 
that allow us to study each of the fundamentals are defined by n-\ dimensional 
hyperplanes that are simple functions of only one of the vibrational coordinates. 
In some cases the value of 77, can be determined by symmetry, as was the case 
for the one-dimensional harmonic oscillator, described above. In general, this is 
not the case. 

While for many systems we can consider the zero-point motions as small 
amplitude vibrations about the minimum energy structure, this will not be the 
case for many systems of interest. In spite of this, in the absence of accidental 
degeneracies, the vibrations are often separable when the right set of coordinates 
is chosen. As such, this chapter will focus on two issues. First, how do we 
choose coordinates with which to describe the fundamental excitations? Perhaps 
even more important, how can we know when we have chosen the right set of 
vibrational coordinates? Once the coordinates are chosen, the second challenge 
is to determine the value of qt at which the nodal surface should be placed. In 
some cases, the value of 77, can be determined by symmetry, but in general this is 
not the case. To address the issue of determining each of the 77,·, we will apply an 
adiabatic version of D M C , A D M C that was originally introduced by Lee, 
Herbert and McCoy (4,5). 

The discussion below is focused on the issues that are involved in 
determining vibrationally excited states. As such, we have not repeated 
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discussions of our general implementation of the DMC procedures. In brief, our 
implementations are based on the algorithm that was outlined in the original 
paper of Anderson (6) and which is reviewed in the paper of Suhm and Watts 
(7). Detailed accounts of our implementation of DMC can be found in the 
original reports of the work on H 3 0 2 and Ne2OH, discussed below (8,9), as well 
as in a recent review of our work (10). 

Systems 

Before discussing this approach and how we chose our vibrational 
coordinates, we will introduce the two systems that will serve as examples. 
These systems are Νβ2θΗ and H 3 0 2 ~. Our work on these systems is described in 
greater detail elsewhere (8,9,11). They are chosen for the present discussion 
because they represent examples of two classes of systems that sample large 
regions of their potentials, even in their ground states. They are also systems for 
which variational calculations have been performed by us for Ne 2OH (77) and by 
Huang, Carter and Bowman for H 3 0 2 (8). These provide points of comparison 
for our ADMC excited state energies. In the case of H 3 0 2 ~, depicted in figure 
1(b), the HOOH structure is fairly rigid, but includes a large amplitude HOOH 
torsion mode as well as large amplitude excursions of the central hydrogen atom 
from its position in the minimum. By contrast, Ne2OH is somewhat more rigid, 
with the larger amplitude motions corresponding to the rotation of the OH unit. 
On the other hand, the binding energy of the constituent pieces is small. 
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The Ne-OH binding energy is only 53 cm"1 (12,13), while the neon dimer is 
bound by less than 20 cm"1. 

The potential for the Ne2OH complex is described by a pair-wise sum of the 
Ne-OH ii-state potential, which we fit to experimental transition frequencies and 
rotational constants (12) and the HFD-B potential for Ne2 of Aziz (7-0. The 
global minimum on this surface has a T-shaped configuration in which the three 
heavy atoms are nearly equidistant. There is also a low-lying minimum in the 
linear Ne-OH-Ne geometry that is 37 cm"1 higher in energy than the global 
minimum. 

576 cm-1 

wag/OO stretch 

" \ o = · 
6211cm-1 ~b 

—•*< OO stretch/wag 

V—~* · 
631 c m 1 \ r ~ 

rock 

573 cm-1 + * 

Λ . 
1526 cm-1 

f r * Λ ï i" 
1618 c m 1 ~ v \ symmetric stretch \ asymmetric stretch 

\ 

3814 cm-1 ^ * - \ 
3815 cm-1 S 

Figure 2. Normal mode vectors at the C2 saddle point in H 30 2" in which the 
central hydrogen atom lies on the OO axis and equidistant from the two oxygen 

atoms. The numbers in each panel indicate the corresponding harmonic 
frequency. Totally symmetric modes are in the left column, modes that have Β 
symmetry are in the right column. (Reprinted with permission from reference 8. 

Copyright 2005 American Institute of Physics.) 
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H 3 0 2 " is a chemically more interesting species than Ne 2 OH. H 3 0 2 " can be 
thought of as a complex of H 2 0 and OH", with one of the O H bonds in the water 
molecule forming a hydrogen bond with the oxygen atom in OH". 
Understanding the interactions of OH" with water is important in investigations 
of proton transport in basic solution. H 3 0 2 " is the simplest example of such a 
complex. A n interesting feature of this complex is that the central hydrogen is 
closer to one of the O H groups than the other, r 0 H - r 0 2 H = 0.3066 Â, when the 
ion is in its equilibrium configuration (75). In this system, there is a low-lying 
first-order saddle point in the geometry in which the central hydrogen atom is 
midway between the two oxygen atoms and a shorter OO distance by 0.050 Â 
This stationary point lies 68.5 cm"1 above the global minimum on the potential 
surface of Huang, Braams and Bowman, used in the present work (75). As this 
energy is much smaller than the harmonic frequency at the minimum that 
corresponds to motion toward the transition state, 1569 cm"1, it is anticipated 
that the most probable geometry will correspond to the hydrogen atom being 
equidistant from the two oxygen atoms. There are also two low-energy barriers 
along the H O O H torsion coordinate. The barrier in the cw-configuration is 374 
cm"1, while the barrier in the ^^-configuration is 147 cm"1 (S). If we rotate 
H 3 0 2 " along the torsion coordinate, constraining the central hydrogen atom to be 
midway between the two oxygen atoms, we find that the magnitudes of the lower 
frequencies change dramatically, as is seen in figure 2. From this analysis we 
expect H 3 0 2 ~ to sample large regions of the potential, even in its ground 
vibrational state. We also expect there to be large couplings among the 
vibrational modes. These factors make it an excellent system to investigate the 
choice of coordinates on the effectiveness of the fixed-node approximation in 
D M C . 

Coordinates 

As mentioned above, the normal mode picture for molecular vibrations 
provides an attractive framework for thinking about the nodes. While for 
strongly bound systems that sample limited ranges of the potential surface in 
their ground states, the usual normal modes that are defined as linear 
combinations of mass-weighted Cartesian displacements provide an appropriate 
choice. Such a set of coordinates is depicted for H 3 0 2 ~ in figure 2. It is clear 
from the discussion above that these are probably not the optimal coordinates for 
investigations of floppy systems, like Ne 2 O H or H 3 0 2 " . 
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^ 2000 
7 £ 1800 
ο 

- 1 6 0 0 

S" 1200 

1000 

Ο 800 

I 600 

400 
0 100 200 300 

τ (degrees) 

τ (degrees) 

Figure 3. Plot of the dependence offive harmonic frequencies for (a) H 3 0 2 ~ and 
(b) D 3 0 2 ~ Using the notation in figure 2, the solid line shows the OO stretch 
frequency, dotted and short dashed lines give the wag and rock frequencies 

while the dot-dot-dashed and long dashed lines give the frequencies of χ and y. 
In H 3 0 2 " the frequencies of the OO stretch and wag flip their energy ordering 

over this range of angles, and we plotted both frequencies with thick solid lines. 
To illustrate the underlying, uncoupled (diabatic) frequencies, we have 

sketched them with thin lines. (Reprinted with permission from reference 8. 
Copyright 2005 American Institute of Physics.) 
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The above definition is the textbook one. As the normal modes are based on 
the second derivatives of the potential at a stationary point, the extrapolation of 
these coordinates for larger amplitude displacements is not unique (16). In fact 
normal coordinates} may be constructed for any set of linearly independent 
vibrational coordinates by following the standard FG matrix formalism 
described by Wilson, Decius and Cross (17). When normal coordinates are used 
to expand the Hamiltonian for perturbative treatments of molecular vibrations 
(18), in the absence of resonance interactions, the effective Hamiltonian is 
independent of the choice of coordinates (19,20). In general for variational or 
D M C calculations, the accuracy of the results for a particular amount of 
computational effort will depend sensitively on the choice of coordinates. Based 
on the above discussion, the choice of coordinates in which we place our nodes 
is critical. 

In the case of the Ne 2 OH system, we follow the work of Cooper and Hutson 
(21) and use the sum and differences of the two N e - O H angles, 0±, the distance 
between the center of masses of O H and Ne 2 , R, the angle between the Ne-Ne 
axis and R, and the rotation of O H off of the plane that contains the heavy atoms. 

For H 3 0 2 " , we use the symmetry adapted linear combinations of the six 
internal coordinates of H 2 0 2 , neglecting the central hydrogen atom. Specifically, 
we use sums and differences of the two O H distances and HOO angles, the OO 
distance and the H O O H torsion angle. We also use the three Cartesian 
displacements of the central hydrogen atom from the center of the OO bond, x, y 
and z. The OO bond is used to define the z-axis. 

We have explored two ways to check the separability of these coordinates. 
The first involves diagonalization of the FG matrix in these coordinates. 
Following Wilson et al. (17), 

where Sj represents one of the symmetry coordinates and q} is a normal mode 
coordinate that is constructed from a linear combination of the j/ 's . In this way, 
{L'1}^ provides a rough measure of the contribution of st to qj. This is only 
approximate because the FG-matrix is not symmetric, and { Z T 1 } ^ need not be 
positive. The above prescription provides a measure of the separability of the 
motions near the equilibrium configuration. As is seen in figure 3, in H 3 0 2 " there 
are large changes in the harmonic frequencies with the torsion coordinate, τ, and 
the relatively low barrier to free rotation along this coordinate in H 3 0 2 ~ leads one 
to expect that such a measure of separability may be misleading. A second 
measure, which is more appropriate for systems like H 3 0 2 " that undergo large 
amplitude motions, is the cross correlation (22), 

(5) 
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where 

(7) 

This quantity will take on values between -1 and 1 with values near zero 
indicating that the modes are uncorrected and values near ±1 indicating that they 
are highly correlated. The Sy have the advantage that they are based on the 
ground state probability amplitude and will reflect the increased or decreased 
separability among the symmetry coordinates upon large amplitude excursions 
from the equilibrium geometry, exhibited by the ground state wave function. 

Both of the above treatments have been applied to H 3 0 2 ~ (8). Because of 
the low barrier for hydrogen exchange between the two O H groups, we use the 
saddle point at 68.5 cm"1 as our reference geometry for the normal mode 
analysis. When we do this, we find that for all but two of the normal modes, 
shown in figure 2, one of the symmetry adapted linear combinations of the 
internal displacements has a value of {ΖΓ1 that is larger than 0.84. The 
exceptions involve the modes at 576 and 631 cm"1. This is not surprising based 
on the plots in figure 3, which show that at the equilibrium configuration, where 
τ = 101°, the frequencies of these two modes undergo an avoided crossing. In 
the case of the Stj values, only five pairs are larger than 0.03, and four of these 
involve displacements of the central hydrogen atom perpendicular to the 0 0 
axis. 

Once the coordinates have been chosen, we need to determine the 
appropriate mass factor for the recrossing probability in Eqs. (3) and (7). For 
Ne 2 OH, we use the procedure outlined in Ref. (5). Alternatively, the associated 
masses may be defined using Wilson G-matrix elements, or the appropriate 
linear combination of these effective masses (17). 

Positioning the Nodes 

Once the coordinates have been identified, the second challenge becomes 
the determination of the value of 77, for the fundamental that corresponds to 
excitation along qh Often symmetry considerations may be used to define the 
position of the nodal plane. An example of this is the harmonic oscillator, 
described above. In many situations, this is not the case. 
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Figure 4. Plot of the energies of the torsion fundamental ofH302~ as a function 
of the position of the node, obtainedfrom DMC. 

As was illustrated, when the node is correctly placed, the energies that are 
calculated from a pair of simulations, one for each side of the nodal surface, are 
identical. We use this condition to optimize the position of the nodal surface. If 
we shift the value of η„ the energy obtained from a calculation on one side of the 
node wil l increase, while the energy from the other calculation wil l decrease. 
This can be understood by the relationship between the width of the potential 
(confinement) and zero-point energies. We developed A D M C based on this 
property (4,5). In this procedure, we first equilibrate a D M C simulation for a 
particular value of η,. Once the simulation has equilibrated, we shift η, by an 
amount, άη, at each time step, where άη is chosen so that the change in the zero-
point energy that is caused by this shift is small compared to the statistical 
fluctuations in the D M C simulation. The procedure is repeated for a second 
simulation that is run over the same range of η» but for the other side of the 
nodal surface. A representative energy profile for a pair of simulations of the 
energy of the fundamental in the H O O H torsion in H 3 0 2 " is plotted in figure 4. 
While there are fluctuations in the energies, we can fit the two curves to 
polynomials in the torsion angle, r, using a linear least squares fitting procedure. 
We then find the point of intersection of the two fit curves. The value of 
rprovides the position of the node. In this case it is 65.17°. The value of Ε(τ) 
gives the energy of the fundamental, 6740 cm" 1. When we repeat this procedure 
five times and average the quantities, we get an average position of the node of 
ηι = 64.6° and an average energy of 6736 cm" 1 (8). This procedure has been 
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used for studies of the fundamentals in Ne 2 SH (5), Ne 2 OH (9), H 5 0 2

+ (23,24) 
and H 3 0 2 " (8,25). 

For a coordinate in which the position of the node is known by symmetry, 
the amplitude of the wave function on both sides of the node must be equal. 
This is not the case, in general. In order to obtain the relative amplitudes on the 
two sides of the nodal surface, additional information is needed. For this, we 
take advantage of the orthogonality of the ground and excited states and require 
that the overlaps of the two parts of the excited state wave function with the 
ground state wave function must be equal. 

Calculating overlaps among wave functions is not straightforward in D M C 
since the information that comes directly from a D M C simulation is a Monte 
Carlo sampling of the wave function. In other words, D M C does not provide an 
explicit method to evaluate the magnitude of the wave function at a specific 
configuration. They are obtained by evaluating the density of walkers in a certain 
region of configuration space (10,26). Within this approach, we calculate the 
number of walkers in the excited state wave function that are inside of a 
hypersphere centered on each of the walkers that represent the ground state wave 
function. Numerically, this procedure is equivalent to convoluting each walker 
with a Gaussian and representing each of the wave functions as a sum of 
Gaussians. Obtaining the optimal width for the Gaussian, or equivalently the 
radius of the hypersphere, requires a balance of having it large enough to 
generate reasonable statistics, while keeping it small enough so as not to broaden 
the wave function. We find that for H 3 0 2 ~, r2 = 0.375 ao2 provides a good 
compromise. This can be checked by investigating variations in the overlaps 
with changes in this radius as well as by evaluating the overlap of the two 
contributions of the excited state wave function. The latter quantity should be 
zero. 

In the present investigations, we use this procedure to obtain overlaps 
between the ground state wave function and the two wave functions that 
represent the excited state. Since the overlap between the ground and excited 
state wave functions should be zero, we scale the amplitudes of the two parts of 
the excited state wave function to ensure that this is indeed the case. Once we 
have evaluated this scaling factor, expectation values of quantities of interest are 
obtained using the descendent weighting approach (7,27). 

Based on the above discussion, it should be apparent that the evaluation of 
excited state energies and wave functions is not inexpensive as each state must 
be evaluated independently. We have investigated several overtones and 
combination bands for H 3 0 2 " . The simplest situation occurs for states with one 
quantum of excitation along each of two coordinates of two different 
symmetries, neither of which is totally symmetric. In this case, a simple fixed 
node simulation can be performed. For combination bands for which only one of 
the coordinates is totally symmetric, the two nodes are treated independently, 
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and the node in the non-totally symmetric coordinate is treated within a fixed-
node approach, while the totally symmetric one is found using the A D M C 
procedure, described above. We have not treated the case of excitation in two 
different totally symmetric modes. 

For overtones, a similar hierarchy exists. Since the first overtone of a mode 
that is not totally symmetric is an even function of that coordinate, the positions 
of the two nodes wil l be related by symmetry. As a result there is only one 
parameter that needs to be optimized, and this can be readily achieved by the 
A D M C procedure where instead of considering the parts of the wave function 
for which qt > η, and q, < ηί9 we focus on | qt \ > η and | qt | < 

For totally symmetric modes, such a symmetry does not exist. Here we 
divide the potential into three pieces, denoted regions I, II and III, that are 
separated by two nodal surfaces, rji separates regions I and II while rjm separates 
regions II and III. In the first step, we perform A D M C simulations in regions I 
and III. this gives two functions rji(E) from region I and rjm(E) from region III. 
We invert these equations to find the values of rji and rjm that correspond to the 
same energy. We then perform an A D M C simulation in region II in which we 
vary the positions of rji and rjm so that the energies in regions I and III are equal. 
We use the Ε(η) profiles from regions I and II to obtain the overtone energies as 
we did in the A D M C simulations for the fiindamentals. 

As the above illustrates, the forms of the nodal surfaces become increasingly 
complex as we increase the number of nodes. While the procedure may be 
extended beyond overtones, to date we have not pursued this in part because the 
assumption that the nodal surfaces take on simple functional forms is unlikely to 
remain appropriate for higher levels of vibrational excitation. 

5 

4H 

2 λ 

1 Η 
1 2 3 4 5 

Γ, /A 
Figure 5. Plot of the probability amplitude for the variational eigenstate of 

Ne2OH with one quantum in the Ne-OH stretch plotted as a function of the two 
Ne-OH distances, r7 and r2. 
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Ne 2OH 

We start by considering Ne 2 OH. For these studies we used the rigid body 
variant of D M C (RBDMC), developed by Buch (25), and consider only the five 
intermolecular molecular vibrations. The results of these simulations are given 
in Table I and are compared to the energies that were obtained by variational 
calculations that were converged to better than 0.1 cm - 1 . Overall, the agreement 
is excellent. The zero-point energy differs by less than 0.2 cm - 1 , while for all but 
one state, the frequencies of the fundamental are within 1.0 cm"1 of each other. 
As noted above, this is a potentially very floppy system and the extent of these 
motions is illustrated in the plots of the wave function slices and projections, 
reported in Refs. (9) and (//). The two exceptions to the excellent agreement 
are seen in the in-plane bend and the Ne 2 OH stretch. We will return to the bend 
in our discussion of problems with coordinate choices, below. In the case of the 
stretch, the disagreement can be understood in terms of a poor choice of the 
nodal surface. This can be seen in the plot of the projection of the probability 
amplitude for this state onto the r,/r 2 plane, shown in figure 5. Clearly the nodal 
surface does not lie along a line that can be defined as rx + r2 - const. Rather 
there is curvature in the nodal surface. We will return to this point, below. 

Table I. Comparison of Diffusion Monte Carlo [DMC] and variational [var] 
energies for low-lying vibrational states in the T-shaped minimum of the 

Ne 2OH potential. 

State DMC var 

Ground state -112.4 -112.2 

Ne—OH—Ne bend 18.2 17.8 

N e 2 bend 22.1 20.8 

N e 2 — O H stretch 33.5 28.4 

In-plane bend b b 
Out-of-plane bend 77.6 78.5 

a Al l energies are reported in cm"1. The ground state energy is reported relative to the 
Ne+Ne+OH dissociation limit while all other energies are reported relative to the 
ground state energy. 

* The in-plane bend fundamental does not exist in Ne2OH. 
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H 3 0 2 -

We recently reported D M C energies for all nine fundamentals in H 3 0 2 ~ and 
D 3 0 2 ~, along with the tunneling splittings along the torsion (8). They are 
reproduced in Table II. As is seen, excellent agreement is obtained with the 
results of vibrational configuration-interaction (VCI) calculations of Huang, 
Carter and Bowman. Due to the large number of vibrational degrees of freedom, 
nine, compared to the five in Ne 2 OH, the V C I energies for H 3 0 2 ~ are not as well 
converged as those for the Ne 2 OH system. This can be seen in the larger 
difference between the zero-point energies, for which the D M C simulations are 
"exact" within statistical uncertainties. Since the frequencies of the excited 
states represent differences between energies, rather than absolute energies, the 
errors should be smaller. Overall, the agreement between the two sets of 
energies, reported in Table II, is excellent. Notable exceptions are seen for the 
displacements in χ and y, which will be discussed below. 

As in Ne 2 OH, there is a sensitivity of the O H stretch frequency to how the 
node is defined. In the case of H 3 0 2 " , both experiment (29) and V C I 
calculations (15) indicate that the O H stretches behave as local modes, rather 
than normal modes. Evidence for this can also be found in the near degeneracy 
of the two fundamentals, which can be seen in the harmonic frequencies in figure 
2. Further evidence is seen in the fact that the frequencies obtained when one 
node is placed in the asymmetric and the local mode stretches are nearly equal, 
within statistical uncertainties, while the symmetric stretch energy obtained by 
D M C is larger. This is discussed in greater detail in Ref. (S). 

A related example can be found in the 0 0 stretch. Here one can imagine 
two definitions. One is the 0 0 bond length, as in HOOH. The other is the 
symmetric linear combination of the distances of the central hydrogen atom from 
the two oxygen atoms. Likewise, the z-component of the central hydrogen 
displacement may be described by either the displacement from the center of the 
0 0 bond or the difference between the distances of the central hydrogen atom 
from the two oxygen atoms. Needless to say, the coupling among modes will 
depend on this choice, as in one case the so-called 0 0 stretch is treated as a 
symmetric stretch of two HO bonds, while in the other it is defined explicitly as 
an 0 0 stretch. We have performed fixed-node D M C and A D M C calculations 
for both pairs of coordinates. The energies for the OO stretch and displacement 
of the central hydrogen atom from the center of the 0 0 bond are reported in 
Table II. The energies for the states obtained from antisymmetric linear 
combinations of the two HO distances in H 3 0 2 " and D 3 0 2 " are 644 and 401 
cm"1, respectively. These are both within statistical uncertainties of the results 
reported in Table II. 
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Table II. Energies of the fundamentals of H 3 0 2 ~and D 3 0 2 . 
(Reprinted with permission from reference 8. Copyright 2005 American 

Institute of Physics.) 

va DMC 
H 3 0 2 - + " - + -groundc 6625 22 6605 14 

Torsion 132 215 131 224 
OO stretch 515 540 505 521 
Wag 576 606 588 602 
Rock 465 528 479 517 
ζ 741 785 644 665 

y 1299 1426 1102 1110 
χ 1413d 1518 e 1019 
OH-syn/ 3641 3666 3631 3641 
OH-asyn/ 3634 3666 3609 3625 
OH-local 3610 3632 

va DMC 
D 3 0 2 - +" — + -

groundc 4882 6 4877 4 
Torsion 108 143 103 145 
OO stretch 493 509 491 495 
Wag 398 406 437 437 
Rock 319 349 354 368 
ζ 484 512 402 408 

y 982 1020 792 797 
X 1094 1110 e 713 
OH-syn/ 2681 2689 2678 2682 
OH-asyn/ 2681 2699 2664 2667 
OH-local 2668 2673 

a Al l DMC results contain a 5 cm"1 statistical uncertainty. 
b The + and -states represent the lower and upper states of the tunneling doublets. 
c The ground state energy is reported relative to the potential minimum. All other 

energies are reported relative to the ground state. 
d Several states between 1320 and 1618 cm"1 contain significant character of this 

fundamental. 
e This state could not be identified from the fixed-node DMC calculations. 
* For these states there is at least one other state with significant OH or OD stretch 

character within 10 cm"1 (OH) or 3 cm"1 (OD) of the reported energy. 
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In contrast, the energies obtained for the symmetric combinations of the two 
HO distances are 521 and 587 cm"1, which are statistically larger than those 
reported in Table II. We believe that the true 0 0 distance provides the better 
description of this mode for several reasons. First, the frequency of this mode 
should be relatively insensitive to deuteration, as is seen in Table II. In addition, 
we find that the value of Sy between the 0 0 stretch and the wag is larger when it 
is defined as the symmetric combination of the two HO distances. We continue 
to work on identifying independent measures of to use to determine the optimally 
separable coordinates. 

Pathological Cases 

In our work, we have found several coordinates for which fixed-node D M C 
simulations behaved in a way that deviated from our expectations. The first 
example of this is in the in-plane bend in Ne 2 OH. Here we found that when we 
placed a node in this coordinate, which is basically setting the two N e - O H 
angles to be equal, the simulation appeared to be converging to one energy, but 
at longer times, the energy dropped significantly and the state was clearly not the 
one we were after. Further analysis showed that the state we were calculating 
was a state in the Ne-OH-Ne minimum with non-zero total angular momentum. 
This was later verified by the variational calculations (//). 

In H 3 0 2 ~ we encountered a similarly large deviation from the variational 
calculations when we considered the fundamentals in the displacements of the 
central hydrogen perpendicular to the 0 0 axis. From analysis of the D M C 
probability amplitudes and calculations of combination bands, it seems that these 
modes are strongly coupled to the OOH wag and rock motions. From our 
analysis, we believe that the states that we obtain by putting a node in the x- and 
^-displacement coordinates of the central hydrogen atom are approximations to 
combination bands and overtones of the wag and rock, perhaps with some OO 
stretch or z-displacement of the central hydrogen atom. This is a point that we 
are continuing to investigate. 

The above discussion serves to illustrate that while the fixed node or 
A D M C simulations may be used to obtain excited states, they must be coupled 
with careful analysis of the wave functions in order to ensure that the state that 
was calculated is the one of interest. 

Summary and Outlook 

A lot may be learned by performing simulations of vibrationally excited 
states. By careful comparison of the D M C results with accurate variational 
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treatments, we are able to benchmark fixed node approaches and check our 
intuition and understanding of the nature of vibrationally excited states. Having 
demonstrated this, the next challenge is to probe the dynamics of these intriguing 
and important systems. While we have shown that one can obtain excited state 
energies and wave functions, and from them properties of these states, challenges 
remain. These include methods for obtaining energies and wave functions for 
highly excited states, intensities and information about molecular rotations. In 
spite of this, at this point in time, i f one is primarily interested in low-lying 
vibrationally excited states of a molecular that undergoes large amplitude 
vibrational motions, A D M C provides an attractive approach for such 
investigations. 
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Chapter 12 

Rotations and Exchange in Doped Helium Clusters: 
Insight from Imaginary-Time Correlation Functions 

Nicholas Blinov and Pierre-Nicholas Roy 

Department of Chemistry, University of Alberta, Edmonton, 
Alberta T6G 2G2, Canada 

We analyze the behavior of doped helium clusters in terms of 
imaginary time correlation functions. Illustrative examples are 
presented in order to highlight the importance of the inclusion 
of quantum exchange effects in the path integral Monte Carlo 
calculation of imaginary time orientational correlation 
functions. We relate the oscillatory behavior of the rotational 
constant to the variation of the minimum value of the 
orientational correlation functions for Bose-Einstein statistics. 

Introduction 

Doped helium clusters provide a feature-rich environment for the study of 
quantum statistical effects over a broad range of size scales. In the nano-scale 
regime, rovibrational spectra of doped helium nanodroplets show sharp spectral 
lines and a renormalized moment of inertia of the dopant species (1,2,3). In the 
case of small to medium size doped helium clusters, a non-monotonic size 
evolution of the effective rotational constant has been observed experimentally 

© 2007 American Chemical Society 165 
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for N 2 0 (4,5) and C 0 2 (6) impurities, for instance, and predicted via theoretical 
simulations for OCS (7,8) and N 2 0 (5,9,10), and C 0 2 (6,11,12) dopant species. 
The observed features have been attributed to quantum exchange effects 
associated with the bosonic character of the helium environment. Theoretically, 
the importance of exchange effects on the rotational dynamics of a doped cluster 
can be assessed with the help of path-integral Monte Carlo (PIMC) simulations 
(5,9,12,14). One of the most interesting results which so far can only be obtained 
from PIMC simulations is a qualitatively correct prediction of size evolution of 
the rotational constant for small clusters (in the range of cluster sizes 
corresponding to the completion of the first solvation shell) based on a two-fluid 
hydrodynamic model (5,11). The approach allows one to relate the superfluid 
response of helium to the rotational dynamics of the doped cluster but relies on 
some assumptions (such as a rigid coupling between the normal fraction of 
helium and the dopant). It is therefore interesting to provide evidence for the 
importance of exchange effects without invoking these assumptions. The 
ultimate test would be based on the energy spectrum of the doped cluster, but 
such an approach is impractical even for small (more than three helium atoms) 
clusters due to exponential scaling of the complexity of the problem. We discuss 
here some aspects of the extraction of rotational constants from imaginary-time 
orientational correlation functions. 

The most practical (numerically exact) approach to treat the rotational 
dynamics of relatively large clusters is based on the analysis of imaginary time 
dipole-dipole correlation functions. These functions can be evaluated using 
ground state quantum Monte Carlo (QMC) (7,8) or PIMC approaches (9,13,14). 
In the rigid rotor approximation, the dipole-dipole correlation function is 
proportional to an orientational correlation function defined as 

where the unit vector η represents the orientation of the molecule, β is the 

reciprocal temperature, Ζ is the partition function, and Η is the Hamiltonian of 
the system. 

In the path-integral picture the difference between the ground state and the 
finite temperature (canonical) average in the above equation appears as a 
difference in topology of the Feynman paths. In the ground state, open paths are 

Formal aspects and practical considerations 
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involved, while at finite temperature, only closed paths contribute to the physical 
properties (other than the Green's functions). There are also important 
differences in the eigenstate (spectrum) representation of the correlation 
functions. In the ground state, the correlation functions are represented by the 

sum of decaying exponential functions Cg(T) = 2-d **' ' w ^ e r e ε \ *s a n 

energy eigenstate of the Hamiltonian: Ηψί = ε^, i is a composite index that 
ι I2 

labels the eigenstates, and Ai = n J . Here ngi is a matrix element of the 
operator i i taken between the ground state, g, and the fth eigenstate. For long 
enough projection times (τ-»αο) the contribution of the highly excited states to 
the correlation function can be projected out. The excitation energies 
corresponding to the transitions involving the ground and few (usually, one or 
two) excited sates can then be extracted from the imaginary time propagation via 
the use of a multi-exponential fit or from maximum entropy approaches (7,5). 

For finite temperatures, the spectral representation of the correlation 

function of Eq. (1) is: C^(r) = — ^ Α ^ τ < ΰ ή , where ωί} - ε] - ει is the 

transition frequency and τ varies in the interval [0, β]. The important difference 
with the ground state is that each decaying exponential function is matched here 
by a growing exponential function associated with the corresponding reverse 
transition. This guarantees the periodicity of the correlation function in 
imaginary time. This is made especially clear using the following representation 
of the correlation function 

where τ e [-β/2,β/2]. In contrast to ground state simulations, the correlation 
function cannot be propagated long enough in imaginary time in order to project 
out excited states for an arbitrary temperature. Still, in the low temperature 
regime (β-»οο), transitions involving only the ground and the first excited states 
will dominate. In this case, a time interval, τ e [0,/?/2], should exist where the 
evolution of the correlation function will be determined by the low lying energies 
(just as in the ground state case). A multi-exponential fitting procedure can then 
be applied on such an interval in order to extract the excitation energies, again, 
as in ground state applications. It should be advantageous to take into account 
the explicit spectral form of the correlation function in Eq. (2) in the fitting 
procedure at finite temperature (13). If the temperature is low enough, and the 
amplitudes of transitions are treated as fitting parameters along with the 

C/,(r) = X ( 2 - ^ 0 y 
Γβ(εί+ε;)/2 

Ay COSh(f<2>A (2) 
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transition frequencies, such a procedure should give exact excitation energies 
(and intensities). 

The challenge of fitting 

The low temperature regime required to obtain accuracies on par with 
ground state calculations demands a large number of discretizations in the path-
integral representation for the density matrix. Such an implementation is 
currently impractical for the bosonic case. The actual temperatures used in 
previous PIMC calculations (0.15-0.4K) are too high to single-out the 
contribution of a single excited state to the multi-exponential sum in the 
expression for the correlation function. For relatively high temperatures, i.e. 
βΒ ~ 1, (where Β is the effective rotational constant of the complex) the above 
fitting may become extremely unreliable because many exponential functions 
contribute simultaneously to the correlation function for any τ. In this case a 
model fit can be used as a qualitative way to analyze the rotational dynamics of 
doped helium clusters. The difference here, when comparing to the above multi-
exponential fit, is that one uses a specific model of the transition amplitudes and 
excitation energies. Rigid top and ro-vibrational Hamiltonian models are 
possible. If the actual rotational dynamics can be accurately described by a rigid 
top model, this procedure provides quantitative results for the rotational 
constant. The accuracy of the fit also provides some insight into the accuracy of 
the model, and so provides useful information (72). We analyze this type of 
approach in the following section. 

Illustrative examples 

To circumvent the technical difficulties associated with the contribution of 
many transitions to the Monte Carlo sampling in the low temperature regime, we 
first choose to illustrate the above considerations using basis-set calculations for 
the He-OCS dimer. The approach and results have been partially discussed in 
Ref. (13). The method allows us to obtain (exact) bound energy levels and 
related eigenfunctions of the He-OCS Hamiltonian. We can then evaluate 
canonical averages for any physical observable including imaginary time 
correlation functions. We present the ro-vibrational energies obtained using 
parity-adapted basis functions by Lanczos diagonalization (75,76) in Table I. 

The energy levels are labeled by the total angular momentum J, the parity, 
p, and the vibrational quantum number, n. These energies are degenerate in M 
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Table I. Energy levels (cm1) for 4He-OCS dimer 

η JoPo JiPo JiPi J2P0 J2P1 
0 -18.6 -18.0 -18.3 -17.7 -17.3 
1 -10.3 -7.8 -18.1 -17.5 -16.6 
2 -9.2 -6.5 -10.1 -16.6 -7.1 
3 -6.5 -4.0 -9.0 -9.6 -6.7 

(the projection of the total angular momentum on the z-axis in the laboratory 
fixed frame). The imaginary time orientational correlation function can now be 
calculated as follows, 

(«z(r)«z(0))4 Σ·"**"*"·** Σ*-*":Ρ){^ΜΡ\*ζ\»''Μ42> (3) 

where the matrix elements of the direction cosines are, 

(nJMp\hz\n'J'Mp')= Σ&"α™Ρ'(^Μρ\ήζ[ΓkMp'), (4) 
ojjc 

where c ^ p is an element of the eigenvectors for state \nJMp) in the parity 

adapted ro-vibrational basis (See Refs. (13) and (77) for details). The non-zero 
matrix elements of the direction cosine in the parity adapted rotational basis are, 

{jkMp\nz\JkMp>) = (1 - δρρ.), (5) 

( ^ k + l ^ ) = V ^ ) 2 / 2 ^ + 1 ) 2 - ^ ( l - V ) , (6) 
' G/+1)̂ (27+1)̂ 7+3) p p 

(jkMp\n,\j-XkMp') = V-/ 2 -Wg^ (, _ δ A ( ? ) 

JiAJ2-\ 

Note that the above matrix elements are diagonal in M, and that the contributions 
from the other two direction cosines to the correlation function are the same. The 
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correlation function from Eq. (3) is plotted in Figure 1 for some representative 
temperatures. We can observe that the lower the temperature, the lower the 
amplitude of the correlation function at τ=β/2. To illustrate the contribution of 
individual energy levels to the canonical averages in Eq. (3), we show in Figure 

2 the Boltzmann factors (including degeneracy), ( 2 J + l ) e ~ ^ , for some of the 
lowest energies. 

0.4 
ο 
α 

T = 0.04K 
Τ = 0.1 Κ 
Τ = 0.38Κ 1 
Τ = 1 κ w 

Figure 1. Orientational imaginary time correlation functions for the He-OCS 
dimer. Results for different temperatures are presented. 

It is clear from the above picture (Figure 2) that at 7M).04 Κ (and even at 
7M). 1 K ) , the ground state contribution dominates. A multi-exponential fit would 
therefore yield results with accuracies comparable to that of a ground state 
analysis in this low temperature regime. On the other hand, at 7M).38 K , the 
temperature of actual nanodroplets experiments, the populations of the excited 
states are relatively high. Under these conditions, a multi-exponential fit could 
be unreliable, but one can use a model fit to obtain the information regarding the 
rotational dynamics. Because many excited states (with temperature dependent 
populations) contribute to the correlation function, the resulting effective 
rotational constant obtained from the model fit wil l depend on temperature. For 
larger clusters, the rotational constant will be renormalized and the Boltzmann 
weight distribution will be different. 
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Figure 2. Boltzmann weights for the lowest states of the He-OCS dimmer at 
Τ = 0.04 Κ O.IK 0.38 Κ and 1.0 Κ. 

Path integral Monte Carlo calculations 

We illustrate the above considerations in Figure 3, where we plot the 
effective rotational constants obtained from fits to linear rotor and symmetric top 
models (75). The temperature dependence of the effective rotational constants 
for the He-OCS complex indicates a deviation from the rigid rotor models. This 
fact should not be surprising since the presence of the helium atom hinders the 
free rotation of the OCS monomer and this floppy complex should not be 
expected to behave as a simple free linear rotor. 

We present orientational correlation functions for ΗβΝ-Ν 20 clusters of 
varying sizes in Figure 4. The calculations are related to those presented in Ref. 
(5) and include Bose-Einstein statistics (exchange). The figure shows that the 
size evolution of the minimum value of the correlation functions at τ=β/2 
exhibits an oscillatory behavior. This pattern is very similar to the size evolution 
of the Β rotational constant. To explore this further, we show in Figure 5 the size 
evolution of the reciprocal value of the correlation function at τ=β/2 for Bose-
Einstein and Boltzmann statistics. We observe that Bose-Einstein statistics are 
required in order to capture the experimentally observed two turnarounds in the 
size evolution. For comparison, we also show in the inset of Figure 5 the actual 
experimental and PIMC Β constants as reported in Réf. (J). The l/C(p/2) values 
and the Β rotational constants clearly have a similar behavior. We explore this 
connection in Figure 6 and observe that the result of the fit is directly correlated 
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0.3 

1 ι 
S 0.2 

111 

- - - - O 

He-OCS dimer 

o-Ô^symmtop 
- D - B

e/r , l n e a r 

Q 
-o- ocs 
φ B H - O C S e * P e r i m e n t I 

w"0 0.5 1 1.5 2 2.5 3 
T(K) 

Figure 3. Effective rotational constants obtained from symmetric top (open 
circles) and linear molecule (open squares) model fits of the PIMC orientational 

correlation function. The experimental value (18) of the Β constant (filled 
diamond) is also presented along with the free OCS Β value (open triangles). 
(Reproduced with permission from Path Integral Monte Carlo Approach for 
Weakly Bound van der Waals Complexes with Rotations: Algorithms and 

Benchmark Calculations by Nicholas Bilnov. Copyright American Institute 
of Physics.) 

Figure 4. Orientational correlation functions for various cluster sizes. 
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• Boltzmann statistics 
0 5 10 15 20 

Ν 

Figure 5. Size evolution of l/C(fi/2) for two statistics. Inset: experimental 
(filled triangles) and PIMC (open symbols) Β versus Ν (Réf. (5)). 

• Bose-Einstein statistics 
• Boltzmann statistics 
ο Bose-Einstein statistics 
0 Boltzmann statistics 

ο · 
ο • 

φ * 
Φ 0 0 00 

0.05 0.1 0.15 0.2 
Β, Κ 

0.25 0.3 

Figure 6. Correlation between l/C(fi/2) and the PIMC (filled symbols) and 
experimental (open symbols) Β constants. 
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to the \/C(fi/2) value. We also present the correlation between l/C(p/2) and the 
experimental Β values. The analysis shows that the Ι/Οφ/2) values obtained for 
Bose-Einstein statistics correlate much better with experiment than results where 
exchange has been neglected (i.e., Boltzmann statistics). The bosonic results still 
deviate from experiment since the height of the correlation function cannot 
simply be connected to the Β constant because of thermal excitations. 

Concluding Remarks 

We have shown how the analysis of orientational imaginary time correlation 
functions obtained from PIMC simulations can provide insight into the size 
evolution of the Β rotational constants in doped helium clusters. We noted that 
for the case of an N 2 0 dopant, exchange effects (Bose-Einstein staitistics) must 
be included in order to reproduce the experimentally observed oscillatory 
behavior of the Β constants. This oscillatory behaviour has been connected to the 
onset of superfluidity where decoupling between a rotor and its environment is 
observed. The oscillation of the value of the correlation function at β/2 directly 
follows the trend in Β constants and therefore provides a measure of decoupling 
that is free from a fit. We note that a connection between C(p/2) and Β has 
recently been used by Miura (19) for a particular cluster size. 
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form, 56 

Correlation function 
linear-scaling evaluation, 61-62 
reciprocal value, Bose-Einstein 

compared to Boltzmann statistics, 
171, 173/-174 

Cut-off values, fixed sample, 60, 62 

dissociation energies, methane 
molecule, methylene radical, and 
methyl radical, 73, 77 

1,2-ethanediol and 1,2-
ethanediol.H20, 119-124 

fixed node, helium dimers and 
trimers, 1-14 

G A B A , 131-132 
glycyl.8H 20, 125-129 
ground state properties, loosely 

bound complexes, overview, 104— 
140 

Diffusion quantum Monte Carlo 
method, fixed node, equilibrium 
bond lengths and harmonic 
frequencies, doublet first-row 
diatomic radicals, 29-41 

Direct diffusion Monte Carlo, 
feasibility, 102-103 

Dissociation energies for diatomic 
molecules by Hartree-Fock, 
variational Monte Carlo, diffusion 
Monte Carlo, 72 

Dissociation energies for methane 
molecule, methylene radical, and 
methyl radical, 73, 77 

Doped helium clusters, rotations and 
exchange, 165-175 

Determinate evaluation algorithm, 
Slater determinant, 59-60 

Diagonal energy correction, Born-
Oppenheimer approximation, 17-
20 

Diatomic radicals, first-row, doublet, 
equilibrium bond lengths and 
harmonic frequencies, 29-41 

Diffusion quantum Monte Carlo 
approach, vibrational excited states, 
147-164 

Diffusion quantum Monte Carlo 
calculations 

Ε 

Effective rotational constants, He-
OCS complex, 171-172/ 

Electron correlation methods, 118 
Equilibrium bond lengths for some 

doublet first-row diatomic radicals, 
calculated compared to 
experimental, 36, 39t 

Error estimate and reduction, 94 
1,2-Ethanediol, gas phase and 

hydrated 
hydrogen bonding, 115-124 
model for more complex species, 

104 
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Excitation energies for carbon atom 
results, comparison among methods, 
51-52 

F 

Fermion sign problem, 94-95 
Finite difference technique for energy 

gradient determination, 33 
Fitting challenge, imaginary time 

dipole-dipole correlation functions, 
168 

Fixed hypernode algorithm, extension 
fixed-node procedure, 89-91 

Fixed node approximation, algorithm 
148, 160-161 

Fixed node approximation in diffusion 
quantum Monte Carlo method, 82-
83, 95 

Fixed node boundary conditions in 
expanded space, 83-84 

Fixed-node diffusion quantum Monte 
Carlo method 

for helium dimers and trimers, 
calculation procedure, 3-4 

random walk approach to 
equilibrium bond lengths and 
harmonic frequencies, 29-41 

Rydberg states, calculations, 44-53 
Floating spherical Gaussian orbitals 

and spherical Gaussian geminals for 
trial wave function, 30-32, 35-36, 39 

Fokker-Planck equation, 36-38 
Fragment molecular orbital method, 

142- 143 
with quantum Monte Carlo method, 

143- 145 

G 

G A B A (γ-aminobutyric acid) 
ground state structure, aqueous 

phase, 129-135 

neurotransmitter, 104 
Geometry optimization procedures, 

33-35 
Glycine trimer, fragment molecular 

orbital method combined with 
quantum Monte Carlo method, 143-
145 

Glycyl .8H 2 0, potential energy surface 
by Grow methodology, 124-
129 

Glycyl radical, 104,124-129 
Grid generation in Slater determinant 

evaluation, 58-59 
Ground state properties, loosely bound 

complexes, 101-140 
Grow computer package for molecular 

potential energy surface using ab 
initio calculations, 105-110 

Grow method applications 
aqueous phase structure, 

glycyl.8H 20, potential energy 
surface, 124-129 

1,2-ethanediol, gas phase and 
hydrated, potential energy 
surface, 118-120 

G A B A , ground state structure, 
aqueous phase, 129-135 

water dimer, potential energy 
surfaces, 110-115 

H 

H 3 0 2 * system 
coordinate placement, 152-155 
diffusion Monte Carlo energies for 

fundamentals, 160-162 
equilibrium geometry, 150/ 
node positioning, 155-158 

Hamiltonian symmetries and 
representations, 85-89 

Harmonic frequencies for some 
doublet first-row diatomic radicals, 
calculated compared to 
experimental, 35, 40/ 
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Hartree-Fock calculated dissociation 
energies, methane molecule, 
methylene radical, and methyl 
radical, 73,77 

Hartree-Fock-variational Monte Carlo 
calculations for glycine trimer, 143— 
145/ 

Helium clusters, doped, rotations and 
exchange, 165-175 

Helium dimers, interaction energies 
relative to exact value for pair, 
separated atoms, 4-6/ 

Helium fixed-node diffusion quantum 
Monte Carlo calculations for dimers 
and trimers, 1-14 

Hel ium N -N 2 0 clusters, correlation 
function, reciprocal value, 
Boltzmann compared to Bose-
Einstein (exchange) statistics, 171, 
173/-174 

Helium-OCS dimer 
basis-set calculations, 168-171 
path integral Monte Carlo 

calculations, 171-174 
Helium trimers, equilateral triangle 

form, interaction energies, 4, 7f-
9/ 

pairwise-additive energy 
calculations, correction, 12-13/ 

Helium trimers, symmetric linear 
form, interaction energies, 9f-\ 1/ 

pairwise-additive energy 
calculations, correction, 12-13/ 

Hellmann-Feynman force estimator 
modification, 34 

Hellmann-Feynman theorem force, 
lithium hydride molecule 
components, 73-75/ 

Hydrogen bonding formation in 1,2-
ethanediol, gas phase and hydrated, 
115-124 

Hydrogen molecular ion 
energies and properties, 15-28 
energy by variational Monte Carlo 

method, 16-20 

Hydrogen molecular ion ground state 
potential energy surface with 

statistical error, 18/-19/ 
rovibrational energies, 20,22-25 

Hypernodal functions in product 
space, 83-85 

Imaginary time dipole-dipole 
correlation functions, analysis, 166— 
168 

Interaction energies for equilateral 
triangle helium trimers, 4, lf-9t 

pairwise-additive energy 
calculations, correction, 12-13/ 

Interaction energies for helium dimers 
relative to exact value, separated 
atom pair, 4-6/ 

Interaction energies for symmetric 
linear helium trimers, 9/-11/ 

pairwise-additive energy 
calculations, correction, 12-13/ 

Intermolecular hydrogen bonding, 1,2-
ethanediol, gas phase and hydrated, 
124 

Interpolation methods for potential 
energy surface generation, 103,106, 
107-110 

Jastrow factors, variational quantum 
Monte Carlo calculations, 44, 45, 
46 

Jastrow-Slater wave function, 30 

Κ 

Kohn-Sham orbitals, open-shell 
localized Hartree-Fock method as 
Rydberg orbitals, 43,46 
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L 

Lee-Yang-Parr correction functional, 
46 

Linear-scaling evaluation, correlation 
function, 61-62 

Lithium hydride molecule, force 
components, 73-75/ 

London dispersion forces between 
helium atoms, 2 

Loosely bound complexes, ground 
state properties, 101-140 

M 

Markov procedure implementation, 
diffusion quantum Monte Carlo 
simulation, 37-38 

Methylene radical, force 
calculations at various geometries, 
77-78/ 

Molecular properties, hydrogen 
molecular ion, 20-21/ 

Monohydrides, first row, energies and 
atomic forces, dissociation energies, 
72-75/ 

Morse potential fitting, 72 

Ν 

N e 2 O H system 
coordinate placement, 152-

155 
diffusion Monte Carlo and 

variational energies, low-lying 
vibrational states, 159 

equilibrium geometry, 150/ 
in-plane bend, fixed-node diffusion 

Monte Carlo, 162 
node positioning, 155-158 

Newton's method 

application to benzene energy 
calculations, 77 

parameter optimization in 
variational Monte Carlo trial 
wave function, 71 

Nodal error, fixed-node 
approximation, definition, 83 

Nodal regions, carbon atom, Rydberg 
states, 47-49 

Nodal surfaces, N - l dimensions, wave 
function, 147-148 

Node definition, sensitivity of O - H 
stretch frequency, 160 

Nodes, positioning, 155-158 
Nonhydrogen atom force calculations, 

Pulay correction, 73 
Numerical threshold cutoff for fast 

evaluation, Slater determinant, 58-
59 

O - H distribution function, 1,2-
ethanediol and l,2-ethanediol.H20, 
121-124 

O - H stretch frequency, sensitivity, 
node definition, 160 

O - H wavefunction for glycyl.8H 2 0, 
128/-129 

0 - 0 stretch energies, fixed-node 
D M C and A D M C calculations, 
160-161 

Open-shell localized Hartree-Fock 
wave function for Rydberg excited 
states, 46-49 

Orientational correlation functions, 
H e N - N 2 0 clusters, 171-172/ 

Ornstein-Uhlenbeck random walk, 
fixed-node diffusion quantum 
Monte Carlo approach to 
equilibrium bond lengths and 
harmonic frequencies, 29-41 
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Ρ 

Path integral Monte Carlo approaches 
to rotational dynamics, relatively 
large clusters, 166-168 

Path integral Monte Carlo 
calculations, helium-OCS dimer, 
171-174 

Pauli principle, 95 
Peptide radical model, 124 
Potential energy surface, interpolating 

surface for G A B A . 5 H 2 0 , 1 3 1 
Potential energy surface interpolation 

scheme, Grow algorithm, 107-110 
Potential energy surface iteration 

scheme, Grow algorithm, 110 
Primitive basis functions, rapid 

evaluation, 60 
Pulay correction, diatomic molecule 

forces, 73-76/ 

Q 

Quantum Monte Carlo. See Diffusion 
quantum Monte Carlo; Fixed node 
quantum Monte Carlo; Variational 
Monte Carlo 

Quantum nuclear motion in ground 
state structure, 1,2-ethanediol, 115, 
118 

R 

Radiative correction, hydrogen 
molecular ion, ground state, 18/-
19/, 20 

Random walkers, branching control, 
33 

Recrossing correction, walkers, 148-
149 

Reimers, Watts, and Klein, water 
dimer potential, 110 

Relativistic corrections, hydrogen 
molecular ion, ground state, 17-20 

Rigid body variant of diffusion Monte 
Carlo, 159 

Rovibrational energies, hydrogen 
molecular ion, ground state, 20, 22-
25,26/-27Z 

Rydberg excitations, carbon atom, 49 -
52 

Rydberg states, quantum Monte Carlo 
methods, 44-53 

S 

Sampling methods 
configuration space, water dimer, 

112-113 
efficiency, 103-104 

Schmidt-Moskowitz-Boys-Handy 
correlation function, linear scaling, 
61-62 

Schroedinger equation for many body 
systems, fixed hypernode method, 
81-92 

Schroedinger equation for many 
fermion systems, revised solution, 
93-100 

Shepard interpolation method for 
potential energy surface generation, 
103, 106, 107-110 

Signed walkers, 95-99 
S IMPLEX technique, 31-32 
Singlet-triplet splitting for carbon 

atom results, method comparison, 
51-52 

Sparse representation, Slater matrix, 
58 

Spheroidene molecule, linear-scaling 
evaluation, local energy, 62-66/ 

Spurious regions, 44 
Statistical error reduction in quantum 

Monte Carlo calculations, helium 
trimer, 12 

D
ow

nl
oa

de
d 

by
 8

9.
16

3.
35

.4
2 

on
 J

ul
y 

3,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 D

ec
em

be
r 

31
, 2

00
6 

| d
oi

: 1
0.

10
21

/b
k-

20
07

-0
95

3.
ix

00
2

In Advances in Quantum Monte Carlo; Anderson, J., et al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2006. 



187 

Symmetric trial function, two-
dimensional electron gas, 99 

Symmetry distinct rotamers, 1,2-
ethanediol, 115-117/ 

Symmetry operations, extended 
Hamiltonian symmetries, 85-89 

Tautomerization, neutral and 
zwitterionic species, glycine, 124— 
125 

Tilting theorem, Ceperley's proof, 44 
Torsional flexibility in G A B A . 5 H 2 0 , 

132-135 
Trial wave function 

floating spherical Gaussian orbitals 
and spherical Gaussian geminals, 
30-32, 35-36, 39 

variational quantum Monte Carlo 
method, 44, 70-71 

Trial wave functions in geometry 
optimization procedure, 34-35 

Turbomole, program package, 46 
Two-dimensional electron gas, results, 

99-100 

Uncontrolled approximations, criteria 
for limiting, 93-94 

Upper bound properties for a restricted 
algorithm using hypernodal 
functions, proof, 85-89 

Variational quantum Monte Carlo 
calculations, dissociation energies, 

methane molecule, methylene 
radical, and methyl radical, 73, 
77 

Variational quantum Monte Carlo 
method, calculations and 
corrections, hydrogen molecular 
ion, 16-20 

Variational quantum Monte Carlo 
method for Rydberg states, 44-46, 
50-52 

Vibrational configuration-interaction 
calculations, H 3 0 2 ' , 160-162 

Vibrational diffusion Monte Carlo 
calculations in Grow algorithm, 
105-110 

Vibrational excited states by diffusion 
Monte Carlo approach, 147-164 

Vibrationally averaged O-O bond 
length in water dimer, 113-
115 

W 

Walker distribution sampling in fixed 
node diffusion Monte Carlo method, 
45-46, 49 

Walkers 
algebraically signed, 95-99 
for calculating vibrational ground 

state wavefunctions, 105, 113 
for G A B A . 5 H 2 0 ground state 

investigation, 131 
pairs, in fixed-hypernode algorithm, 

89 
recrossing correction, 148-149 

Water dimer, potential energy surfaces 
with Grow computer program, 110-
115 

Wave functions for antisymmetric and 
symmetric ground states with signed 
walkers, 96-97 
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Zero point energy convergence, 
potential energy surface 
1,2-ethanedioland 1,2-
ethanediol.H20, 120-124 

water dimer, 113-115 
Zwitterionic species 

G A B A . 5 H 2 0 , 129-131 
glycyl radical conformer, 
124 
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